SPRT ${ }^{\circledR}$

SP-RMDIIID/SP-RMDIVD MINI THERMAL PRINTER

User Manual

(VER 1.06)

Beijing Spirit Technology Development Co., Ltd www.sprt-priner.com

Contents

Brief Instruction 1
Chapter 1 Characteristics and performance 1
1.1 Main Features 1
1.2 Print Performance 2
Chapter 2 Install Instruction 4
2.1 Outer appearance 4
2.2 Outer dimension 5
2.3 Paper install 6
Chapter 3 Operating Instructions 7
3.1 Interface connection 7
3.1.1 Serial connection 7
3.1.2 Parallel interface connection 9
3.1.3 The printer parameter setting 10
3.2 Light and button operation 13
3.3 Self-test and HEX 14
3.4 Printer initialization 16
Chapter 4 Printing commands 17
4.1 Summary 17
4.2 Commands Description 17
Chapter 5 Using and Maintenance 44
5.1 Printing Head Maintenance 44
5.2 Other 44
Chapter 6 Printer Using under Windows 45
Appendix 1 Valid Codes Form under ANK printing 45
Appendix 2 Valid Codes Form under Chinese printing 48
Appendix 3 Printing Commands Form 49
Appendix 4 Single chip microcomputer interface example 51

Brief Instruction

RMDIIID, RMDIVD series mini printer is a intelligent dot printer toward the 21th century belong to SPRT. The machine adopt new machine with single chip computer, with small volume, light weight, fully functional, high speed, high-definition, beautiful appearance, simple operation, convenient connection. RMDIIID, RMDIVD series mini printer with full product line, standard installation size, it is the best product to match with medical equipment, fire control station, industrial control and other instruments and for upgrading.

RMDIIID, RMDIVD thermal printer is mode with the same character set 1 and set 2 RMDIII, according to the characters in the Chinese manner of lattice can print 24 different lattice high 12 * 24 half-width characters, 816 * 16 dot high half-width characters, Chinese characters have 24 * 24,16 * 16dots, secondary character selection, as well as a large number of mathematical symbols, special symbols, graphics, curve. Can change through the command to print and character spacing characters, you can customize the size of the part code has since detection function.

RMDIIID, RMDIVD printers have Windows driver, able to directly under PC for printing all kinds of characters, Chinese characters and graphics.

Chapter 1 Characteristics and performance

1.1 Main Features

\diamond Using thermal line printing
\diamond Integrating the print head and circuit with one body, easy to installed
\diamond Comes with a single chip processor, with standard parallel interface and serial interface, facilitate with various computer or online using intelligent instruments
\diamond With the command of real-time print for Chinese characters, characters and graphics, Instruction set is compatible with the traditional printer.
\diamond Support multiple international code page and pre-store bitmap print
\diamond With self-test function, print all code, high HD characters and beautiful font
\diamond Have enough receive buffer 3 k
\diamond Thermal paper was $57.5+/-0.5 \mathrm{~mm}$ wide
\diamond Paper Type: $57.5 \times \varnothing 40 \mathrm{~mm}(\mathrm{MAX})$
\diamond Power supply command:
SP-RMDIIID S/Q/PH, SP-RMDIVD S/Q/PH voltage input: DC5V~8.5V
electric current: 3A
SP-RMDIIID VS/VQ/VPH, SP-RMDIVD VS/VQ/VPH voltage input: DC9V~24V electric current: 3A
\diamond Operating Temp/Humidity: $0 \sim 50^{\circ} \mathrm{C}$
\diamond Can be used under DOS and Windows desktop
$\diamond 8$ dots/mm, 384 dots/line
\diamond Print speed: $30 \mathrm{~mm} / \mathrm{s}$
\diamond THP: 50KM
\diamond DIIID/DIVD installation size: $103.5 \mathrm{~mm} \times 57.5 \mathrm{~mm}(\mathrm{~W} \times \mathrm{H})$ Depth: 61 mm
\diamond DIIID/DIVD outer dimension: $110 \mathrm{~mm} \times 64 \mathrm{~mm} \times 72.5 \mathrm{~mm}(\mathrm{~W} \times \mathrm{H} \times \mathrm{D})$.
\diamond Printing characters:
Chinese: GB18030: 16*16, 24*24
English: ASCII 5*7, 12*24, 8*16
Graphic: support dot matrix graphics, curves and download graphics printing

1.2 Print Performance

\diamond Printing methods: Thermal type printing
\diamond Interface: Parallel interface (CENTRONICS compatible) or serial interface (RS - 232 or TTL)
\diamond interface connector :
Serial: IDC10 pin socket
Parallel: IDC26 pin socket
\diamond Control code general ESC, FS, GS control code
\diamond Button SEL for self-test and on-line control, SEL lamp for error alarm and status indication. Usually the lamp is off. Flicker frequency of different has
the different meaning. The details can refer to the third chapter 3.2. Button LF is paper feeding button and LF lamp is power light. The combination of Button SEL and LF can modify printer parameters. Refer to Chapter 3.1.3.
\diamond Printing paper: thermal paper, width $57.5 \pm 0.5 \mathrm{~mm}$
\diamond MCBF: MCBF (Mean Cycles Between Failure)(5~15)×10 ${ }^{6}$
\diamond Working Temp: $0 \sim 50^{\circ} \mathrm{C}$, Humidity $10 \sim 80 \%$
\diamond Saving Temp: $-20 \sim 60^{\circ} \mathrm{C}$, Humidity $10 \sim 90 \%$

Chapter 2 Install Instruction

2.1 Outer appearance

[^0]
2.2 Outer dimension

2-2 SP- RMDIIID model picture

2.3 Paper install

Press the button to open the door. After loading the paper roll, close the door.

Chapter 3 Operating Instructions

3.1 Interface connection

3.1.1 Serial connection

RMDIIID, RMDIVD Serial interface is RS - 232 serial interface and 485 serial interface.

1. RS-232

232 interface levels for both EIA and TTL, support RTS/CTS and XON/XOFF handshaking protocol, the interface type is IDC10 PIN socket and 5 PIN SIL, each types of socket cords number are defined as follows:

IDC10 pin number definition shown as figure 3--1:

5PIN SIL pin number shown as figure 3-2:

3-2 5PIN SIL pin number
Serial interface each pin number definition shown as figure 3-1:

Signal	IDC10	5PIN socket		
Name	Source socket cords number	cords number	Instruction	
RXD	3	3	PCB board	Printer receive data from computer

TXD				

3-1 Serial interface pin number definition
Mark: (1)"Source" means the source for the signal
(2) The signal logic is divided into EIA and TTL level due to insert different sockets; Under the serial interface connect, the baud rate and data structure can be set with button or software, Before out of factory the product has been set to $9600 \mathrm{bps}, 8$ data bits, no calibration and a stop bit; two types of handshaking protocol agreement can be chosen. One is mark control way, other is X-ON/X-OFF agreement, two kinds of handshaking protocol agreement's instructions shown as figure 3--2:

Type of handshaking protocol agreement	Data direction	RS-232C interface signal
mark control	Data allowable	Signal line 1 and 8 are show Space
	Data disallowed	Signal line 1 and 8 are show Mark

X-ON/ X-OFF control	Data allowable	Send X -ON code 11 H on signal line 2
	Data disallowed	Send X -ON code 13 H on signal line 2

3-2 Tow types of handshaking protocol
2. 485 Serial interface

485 interface is IDC10 pin socket, pin number refer to figure of $3--1$, each pin definition is different with interface RS-232. 485 interface's effective socket is IDC10 pin socket which next to power supply, the pin definition is as below:

Signal	IDC10 pin socket cords number	
A	7	
B	9	
3		

3.1.2 Parallel interface connection

SP-D10 printer's parallel interface is compatible with CENIRONICS, whose interface socket is 26 lines flat cable or replace model. Parallel interface pin number shown as below:

3-3 Parallel interface pin number

Parallel interface pin number definition shown as below:

Cords No.	Signal	Direction	Instruction
1	ISTB	input	Gate trigger, rising along the read data.
3	DATA1	Input	Those signals represent the message from
5	DATA2	Input	1 to 8, when the logic is "1" of each signal,it
7	DATA3	Input	is high level, logic show"0"mean low level.

9	DATA4	Input	
11	DATA5	Input	
13	DATA6	Input	
15	DATA7	Input	
17	DATA8	input	
19	IACK	output	Pulse reply," low" level mean the date has been received and printer already to receive next date.
21	BUSY	output	"high" level mean printer is " busy" can not receive data
23	/PE	output	Via resistance drop down to " low" level mean have paper
25	SEL	---	Via resistance pull up to " high" level mean printer online
4	/ERR	output	Via resistance pull up to " high" level mean no trouble
2, 6, 8	NC	---	Not connected
$\begin{aligned} & 10,12,14,16 \\ & 18,20,22,24 \end{aligned}$	GND	---	Ground connect, logic"0" level

Mark: (1)"input" mean enter into printer, "output" mean output from printer.
(2) The signal's logic level is TTL level.

3.1.3 The printer parameter setting

Printer parameter can be set via two ways:

1. Via software to set

You can download the software set tool, instruction refer to setting tool.

2.Via SEL and LF Combination set

Enter the parameter setting: press on 【LF】button and connect the power. At this
time，red indicator will flash once one second．Release 【LF】button within three flashes． The printer enters into setting status and print related message．Choose the setting item through 【SEL】button．Press【SEL】button once，the setting item will go to the next and print out the setting value of this item．Choose the setting value of item through 【LF】 button．Press【LF】button once，the setting item will go to the next．

Exit the parameter Settings：press the 【LF】 button，then press【SEL】button，release
【LF】button and 【SEL】button，print out＂Exit Set Mode＂notice message．Now the set parameters have been saved．Exit the setting mode and enter into normal working．If you close the power supply of printer directly，the setting parameter will lose．

Summary setting（when Parallel interface there is no baud rate and Serial interface format setting items）：

1，Baud Rate：

2，Data bit／Handshaking／Parity：

Instructions

Data Bit：8bit or 7

Handshaking: RTS/CTS or XON/XOFF
Parity: None or Odd or Even
3, Language Status:

Description:

1. GB12345 with national standard secondary character GB2312 corresponding traditional character.
2. The standard model 24 models only support interface secondary character GB2312 a pattern, 16 point models sup interface BIG5 and traditional GB12345 choice.
4, Printing Font:

Description: characters font is only effective in Chinese character mode, English mode only 6 * 8.
5. Printing Density:

6. Paper Sensor Setting:

7, Power Level:

8, Printing Direction:

9, Command System:

10, Dot Matrix Printer Compatible:

This setting can be used for dot matrix printer models alternatively:

1. After selecting this setting, power consumption level still can be chosen.
2. After selecting this setting, the function of selecting font size for characters and Chinese characters will be not supported.

3.1.4 Power supply connection

SP-RMDIIID S/Q/PH, SP-RMDIVD S/Q/PH voltage input DC5V~8.5V

Electric current: 3A

SP-RMDIIID VS/VQ/VPH, SP-RMDIVD VS/VQ/VPH voltage input: DC9V ~ 24 V Electric current: 3A
Power socket is like the following figure3-4, PIN assignment of power socket is like below figure 3-5:

Figure 3-4 Power Socket Drawing

PIN Number	PIN Assignment	Instruction
1	VIN	Power Input
2	NC	NC
3	GND	GND

Figure 3-5 PIN Assignment for power socket

3.2 Light and button operation

The function of each button is different according to the different working mode. Refer the detailed to 3.1.3. The normal working mode is as below,

SEL

Online status switching button．Under online status，the interface printing is valid．Under offline status，【LF】button is valid．The default is online status when printer is power on．

LF

When printer is power on，this button is online status．At this time，pressing【SEL】button to be offline status and press LF button to feed paper．Press again to stop paper feeding．During online status，this button is valid．

Power indicator（green）

Indicates on／off status of power．

Errors and busy status alarm light（red）

Light status	Instruction
off	Normal working
Blink once，off 1 second	Lack of paper，waiting for has returned to normal after the paper
Blink twice，off 1 second	The nose too warm，waiting for the nose temperature is reduced，
Flashing 3 times，off 1 second	The nose heating plate damage， irreversible，need to repair

Mark：When the printer is in a state of busy，red light will light up．

3．3 Self－test and HEX

Self－test can test whether the printer is working properly or not．If the self－test receipt can be printed correctly，it means the printer is normal except the interface with the host．Otherwise，the printer will need to be repaired．

Self－test receipt and analysis

In self－test receipt，software version，interface forms，characters and other configuration information are printed．Self－test receipt shown in the figure below：

3-4 self-test receipt
In the figure, the left one is self-test receipt for serial interface model and the right one is for parallel interface model. The printing sequence is from the below to above.

Mark:

1, Due to that the default configuration item may be different when the printer is out of factory, the font size of self-test receipt and the content of each configuration is according to the actual content of printed receipt. The above picture is just for reference.

2, The specific content of each item set can reference "3.1.3 printer parameters setting" section. After setting manually each time, it can be test whether the setting is successfully through printing self-test receipt.

Self-test method:

1, Hold down the "SEL" button and turn on the printer, then loosen the button, the printer will print out the self-test list.

2, Under normal working mode, click SEL button once, then hold down the

LF button, at the same time, click the SEL button, the printer will print self-test list.

Hex printing method
Hold the [LF] button and connect the power. At this time, the red indicator light will flash once one second. After three flashes of indicator, loosen 【LF】 button. The red indicator will continue to flash. After flashing three times again, the flashing stops. The printer will print out "Hexadecimal Dump". Now the printer enters into the hex printing mode.

3.4 Printer initialization

There are two methods for the printer initialization. One is to use the control code ESC @, by the host sends a command to the printer, through which using software initialization. The second is to restart the printer.

Chapter 4 Printing commands

4.1 Summary

All the printing commands of SP-RMDIIID, SP-RMDIVD are fully compatible with traditional ESC printing commands. The description form of each command is as following,

Command name	Function	
Format:	ASCII:	the standard ASCII character sequence
	Decimal:	the Decimal number sequence
	Hexadecimal:	the Hexadecimal number sequence
Explanation: the function of command and usage method		
Example: some examples are listed to illustrate the command for better understanding.		

The following is the description of each command according to the function of each command.

4.2 Commands Description

4.2.1 Paper Feeding Commands

LF			Feed Line
Format:	ASCII:	LF	
	Decimal:	10	
	Hexadecimal:	OA	

Explanation: The printer prints the current line and feeds paper forwards one line.
Remark: One line means the current character line.

ESC J
n Dot Line Feed

Format:	ASCII:	ESC	J	n
	Decimal:	27	74	n
	Hexadecimal:	$1 B$	$4 A$	n

Explanation:

The printer feeds paper n dot lines. $n=1 \sim 255$.
This command doesn't send carriage return and feed line. It won't influence the later feed line command.

If you need to feed paper immediately but no carriage return, can use ESC J command. Line spacing will be enlarged automatically when using commands ESC V, ESC W and FS W for enlarging characters.

ESC 1 Set n Dot-line Spacing
Format: ASCII: ESC 1 n
Decimal: 27 n 49
Hexadecimal: $1 \mathrm{~B} \quad 31 \mathrm{n}$
Explanation:
The n dot-line spacing is set for future Line Feed command. $\mathrm{n}=0 \sim 255$
Default setting $\mathrm{n}=3$ for text printing, $\mathrm{n}=0$ for bitmap printing when using ESC K command.
The BASIC programs for observing the effect of this command are as below:
FOR I=1 TO 11 STEP 2
LPRINT CHR\$(27);CHR\$(49);CHR\$(I); 'ESC 1 set line spacing
LPRINT "RMWD TEST" ' Print character string and feed line
NEXT I
The print result of the above is as following:

4.2.2 Format Setting Commands

ESC B
Format: ASCII: ESC

B n1 n2 n3...NUL

Decimal:	27	66	$\mathrm{n} 1 \mathrm{n} 2 \mathrm{n} 3 \ldots 0$
Hexadecimal:	1 B	42	$\mathrm{n} 1 \mathrm{n} 2 \mathrm{n} 3 \ldots 00$

Explanation:

The vertical tab positions are entered as n1, n2 and so on. Character NUL is added at the end to indicate that the command is over.

VT command is to carry out vertical tab and the paper is fed to the next vertical position. All input vertical tab positions can be deleted by using this command in ESC B NUL format.

Example: set three vertical tab values at $2^{\text {nd }}$ line, $5^{\text {th }}$ line, $8^{\text {th }}$ line in one page, you can send the following commands:

ASCII:	ESC	B	STX	ENQ	BS	NUL
Decimal:	27	66	2	5	8	0
Hexadecimal:	$1 B$	42	02	05	08	00

The BASIC programs about the above example are as below:
LPRINT CHR\$ (27); "B"; CHR\$ (2); CHR\$ (5); CHR\$(8); CHR\$(0); ‘ESC B command

LPRINT CHR\$(11);
LPRINT "SPRM1";
LPRINT CHR\$(11);
LPRINT "SPRM2";
LPRINT CHR\$(11);
LPRINT "SPRM3"
'VT command 'print character string
'VT command 'print character string
'VT command 'print character string

The print result of the above program is as following:

> SPRMB
> SPRMZ
> SPRM1

VT

Carry out Vertical Tab Value
Format: ASCII: VT
Decimal: 11
Hexadecimal: OB
Explanation: Feed paper to the next vertical tab position which is set by ESC B command.
Notice: if there is no vertical tab value setting, or the current position equals or is beyond the last vertical tab position, VT command is to feed paper one line only (same to LF command).

Format:	ASCII:	ESC	D	n1 n2 n3...NUL
	Decimal:	27	68	$n 1 \mathrm{n} 2 \mathrm{n} 3 \ldots 0$
	Hexadecimal:	$1 B$	44	$\mathrm{n} 1 \mathrm{n} 2 \mathrm{n} 3 \ldots .00$

Explanation:

The horizontal tab positions are entered as n1, n2 and so on, all of which should be within the line width of this model printer. Character NUL is added at the end to indicate that the command is over.

All set horizontal tab positions can be deleted by using this command in ESC D NUL format.
Command HT carry out horizontal tab.
Example: set three horizontal tab values at $2^{\text {nd }}, 9^{\text {th }}$ line, $14^{\text {th }}$ character position in one line,

ASCII:	ESC	D	STX	HT	SO	NUL
Decimal:	27	68	2	9	14	0
Hexadecimal:	1B	44	02	09	$0 E$	00

The BASIC programs for this example are as below:
LPRINT "1234567890123456789" 'Ruler
LPRINT CHR\$(27); CHR\$(68);CHR\$(2);CHR\$(9);CHR\$(14); CHR\$(0); 'ESC D command

LPRINT CHR ${ }^{(9)}$;
LPRIN "HT1";
LPRINT CHR\$(9);
LPRINT "HT2";
LPRINT CHR\$(9);
LPRINT "HT3";

LPRINT CHR $\$(13)$;

The print result of the above program is as following:

HT1 HT2 HT3
 1234567890123456789

HT
Decimal: 9
Hexadecimal: 09

Explanation:

The print position is advanced to the next horizontal tab position which is set by ESC D
command.
Remark: If there is no horizontal tab value setting, or the current position equals or is beyond the last horizontal tab position, HT command won't be carried out. If the horizontal tab position is beyond the current line width, HT command won't be carried out either.

ESC f		Print Blank Characters or Lines			
Format:	ASCII:	ESC	f	m	n
	Decimal:	27	102	m	n
	Hexadecimal:	1 B	66	m	n

Explanation:
When $\mathrm{m}=0, \mathrm{ESC} \mathrm{f} \mathrm{NUL} \mathrm{n}$ will command to print n blank characters
When $\mathrm{m}=1$, ESC f SOH n will command to print n blank lines. $\mathrm{n}=0 \sim 255$.
Remark:
When $m=0$, if the value of n is beyond the current line width, the printer will continue to print blank in the next line.

When $\mathrm{m}=1$, paper will feed n current line heights.
Example: print 6 blank characters in one line, you can send the following commands: ASCII:

ESC	f	NUL	ACK		
Decimal:	27	102	0	6	
Hexadecimal:	1 B	66	00	06	

Another example: print 6 blank lines, you can send the following commands:

ASCII:	ESC	f	SOH	ACK	
Decimal:	27	102	01	6	
Hexadecimal: 1 B 66 01 06 ESC I Set Left Margin Format: ASCII: ESC I n Decimal: 27 108 n Hexadecimal: 1 B 6 C n					

Explanation:

The value of n should be in the range from 0 to the line width of this model printer.
Default $n=0$, that means no left margin.
This command sets absolute position, and won't be influenced by character commands ESC U and ESC W.

Example: set left margin value to 12 , you can send the following commands:
commands:
ASCII: ESC 1 FF
Decimal: 2710812
Hexadecimal: 1B 6C 0C
The BASIC programs for this example are as below:
LPRINT "1234567890123456" 'Ruler
LPRINT CHR\$(27); CHR\$(108);CHR\$(12); 'ESC 1 command
LPRINT "123456789012345678901234567890"
The print result is as following:

ESC Q Set Right Margin

For

Format:	ASCII:	ESC	Q	n
	Decimal:	27	81	n
	Hexadecimal:	1 B	51	n

Explanation:
The value of n should be in the range from the line width of this model printer.
Default $\mathrm{n}=0$, that means no right margin
This command sets absolute position, and won't be influenced by character commands ESC U and ESC W.

After setting this command, the printer will carry out carriage return and feed line as long as the right margin position is reached.

Example: set right margin value to 12 , you can send the following commands:

ASCII:	ESC	Q	ACK
Decimal:	27	81	12
Hexadecimal:	$1 B$	51	OC

The BASIC programs for this example are as below:
LPRINT "12345678901234567890123456789012" 'Ruler
LPRINT CHR\$(27); CHR\$(81);CHR\$(12); 'ESC Q command
LPRINT "123456789012345678901234567890";
LPRINT "12345678901234567890"

The print result is as following:

ESC P
Set Character Space
Format: ASCII: ESC P n
Decimal: 27112 n
\qquad
Explanation:
This command is used to set space dot between characters, which is also valid for Chinese characters.

Default $n=0$, means no space between characters. (dot is absolute value and won't be influenced by enlarging or narrow commands), $n=0 \sim 255$

4.2.3 Character Setting Commands

ESC U Enlarge Width

Format: ASCII: ESC U n
Decimal: $27 \quad 85$ n
Hexadecimal: 1B 55 n
Explanation:
After inputting this command, the characters, graphics and Chinese characters are printed at n times of normal width, $\mathrm{n}=1 \sim 8$. Default $\mathrm{n}=1$ when the dots are 24 , while default $\mathrm{n}=2$ when the dots are 16. These are normal printing width.

Remark: $n=1 \sim 8$, the other value of n will be invalid.
The BASIC programs for observing the enlarging effect of this command are as below: FOR I=1 TO 3

LPRINT "CHR\$ (27); CHR\$ (85);CHR\$ (I); 'ESC U command
LPRINT "SPRM"; 'Print character string
NEXTI 'CR command

The print result is as following:

ESC V				Enlarge Height	
Format:	ASCII:	ESC	V	n	
	Decimal:	27	86	n	
	Hexadecimal:	1 B	56	n	

Explanation:

After inputting this command, the characters, graphics and Chinese characters are printed at n times of normal height, $\mathrm{n}=1 \sim 8$. Default $\mathrm{n}=1$ when the dots are 24 , while default $\mathrm{n}=2$ when the dots are 16. This command should be sent out at the beginning of one line.

Remark: $n=1 \sim 8$, the other value of n will be invalid.
The BASIC programs for observing the enlarging effect of this command are as below:
FOR I=1 TO 3 ' from 1 to 3 times
LPRINT CHR\$ (27); CHR\$ (86); CHR\$ (I); 'ESC V command
LPRINT "SPRM"; 'Print character string
NEXT I
The print result is as following:

ESC W		Enlarge Width and Height	
Format: ASCII::	ESC	W	n
Decimal:	27	87	n
Hexadecimal:	1 B	57	n

Explanation:

After inputting this command, the characters, graphics and Chinese characters are printed
at n times of normal width and height, $\mathrm{n}=1 \sim 8$.
Remark: $n=1 \sim 8$, the other value of n will be invalid.

FOR I=1 TO 3
' from 1 to 3 times
LPRINT CHR\$ (27); CHR\$ (87); CHR\$ (I); 'ESC W command
LPRINT "SPRM"; 'Print character string

NEXT I

The print result is as following:

ESC Select/cancel Underline Print
Format: ASCII: ESC - n
Decimal: 2745 n
Hexadecimal: 1B 2D n

Explanation:

When the lowest dot $n=1$, select underline print; when the lowest dot $n=0$, cancel underline print.

All characters including spaces will be printed out with underline after selecting underline print command, unless cancel the underline print command. This command is also valid for Chinese characters.

Remark: Only the lowest dot of n is valid. Default $n=0$.
The BASIC programs for observing the effect of this command are as below:
LPRINT CHR\$ (27); CHR\$ (57); CHR\$ (2); ' Enlarge the width and height twice
LPRINT "SPRM";
LPRINT CHR\$ (27); CHR\$ (45); CHR\$ (1); ' Select underline print
LPRINT "SPRM"; 'SPRM print with underline
LPRINT CHR\$ (27); CHR\$ (45); CHR\$ (0); ' Cancel underline print
LPRINT "SPRM";
The print result is as following:

ESC +			Select/prohibit Up-line Print	
Format:				
	ASCII:	ESC	+	n
	Decimal:	27	43	n
	Hexadecimal:	1B	2 n	n

Explanation:

When the lowest dot $n=1$, select up-line print; when the lowest dot $n=0$, prohibit up-line print.

All characters including spaces will be printed out with up-line after selecting up-line print, unless prohibit the up-line print command. This command is also valid for Chinese characters.

Remark: Only the lowest dot of n is valid. Default $\mathrm{n}=0$.
The BASIC programs for observing the effect of this command are as below:
LPRINT CHR\$ (27); CHR\$ (57); CHR\$ (2); ' Enlarge the width and height twice
LPRINT "SPRM";
LPRINT CHR\$ (27); CHR\$ (43);CHR\$ (1); ' Select up-line print
LPRINT "SPRM"; ' SPRM print with up-line
LPRINT CHR\$ (27); CHR\$ (43);CHR\$ (0); 'Cancel up-line print
LPRINT "SPRM";
The print result is as following:

ESC i		Select/prohibit Reverse White Print		
Format:	ASCII:	ESC	i	n
	Decimal:	27	105	n
	Hexadecimal:	$1 B$	69	n

Explanation:

When the lowest dot $n=1$, select reverse white print; when the lowest dot $n=0$, prohibit reverse white print. Reverse white print is printing in the black background, just like the film of photography. The normal printing is that printing black characters in white background. The default is prohibiting reverse white print.

Remark: Only the lowest dot of n is valid. Default $\mathrm{n}=0$.
The BASIC programs are as below:
LPRINT CHR\$ (27); CHR\$ (105); CHR\$ (1); ' Select reverse white print

LPRINT "SPRD"

The print result is as following:

ESC c			Select/prohibit Reverse Print	
Format:	ASCII:	ESC	c	n
	Decimal:	27	99	n
	Hexadecimal:	1 B	63	n

[^1]When the lowest dot $\mathrm{n}=1$, select reverse print; when the lowest dot $\mathrm{n}=0$, prohibit reverse print.

Remark: Only the lowest dot of n is valid. Default $n=1$.
Notice: Reverse print not only support character mode but also support graphics mode and Chinese character mode. When print the graphics in reverse direction, pay attention to the printing sequence of graphic units, please check ESC K command.
ESC 6 Choose Characters Set 1

Format:	ASCII:	ESC	6
Decimal:	27	54	

Hexadecimal:: 1B 36
Explanation: After inputting this command, all the characters will be printed out according to the Characters Set 1 in ANK.

ESC 7
Choose Characters Set 2
Format: ASCII: ESC 7

Decimal: 2755
Hexadecimal: 1B 37
Explanation: After inputting this command, all the characters will be printed out according to the Characters Set2 in ANK.

4.2.4 User-defined Character Setting Commands

ESC $\quad \&$			User Define Character			
Format:	ASCII:	ESC	$\&$	m	n 1	$\mathrm{n} 2 \ldots \ldots \mathrm{n} 6$
Decimal:	27	38	m	n 1	$\mathrm{n} 2 \ldots \ldots . \mathrm{n} 6$	
Hexadecimal:	1 B	26	m	n 1	$\mathrm{n} 2 \ldots . . \mathrm{n} 6$	

Explanation: This command permits user to define one character. Parameter m is character code the user defines, $m=32 \sim 255$; parameter $n 1, n 2 \ldots . . n 6$ is structure code to define this character. The character dots should be 6x8, which means 6 column and 8dots each column. There is one character byte in each column and the MSB is on the tope as below picture,

User-defined character is saved in RAM and will be lost after power off. If several ESC \& commands use the same m value, only the last one is valid. At most 32 characters can be defined by users. Ref: ESC\% and ESC: commands.

ESC $\%$	Replace User-defined Character							
Format: ASCII:	ESC	$\%$	m 1	n 1	m 2	$\mathrm{n} 2 \ldots \ldots \mathrm{mk}$	nk	NUL
Decimal:	27	37	m 1	n 1	m 2	$\mathrm{n} 2 \ldots \ldots \mathrm{mk}$	nk	0
Hexadecimal:	1 B	25	m 1	n 1	m 2	$\mathrm{n} 2 \ldots \ldots \mathrm{mk}$	nk	00

Explanation:

This command is used to replace character n in current characters set to user-defined character m. After using this command, the user-defined character m will be printed out instead of character n in current characters set.
$\mathrm{m} 1, \mathrm{~m} 2 \ldots . . \mathrm{mk}$ is user-defined character code.
$\mathrm{n} 1, \mathrm{n} 2 \ldots . . \mathrm{nk}$ is replaced character code in current character set.
Both the value of m and n should be 32~255. Subscript k should be 1~32. The largest character number which can be replaced is 32 . Character NUL is added at the end to mean the command is over. Ref: ESC \% and ESC : command.
Remark: No matter in Chinese mode or character mode, replacing character will be printed when printing this character code.

| ESC : | | | Recover Character in Character Set |
| ---: | :---: | :---: | :---: | :---: |
| Format: ASCII: | ESC | $:$ | |
| Decimal: | 27 | 58 | |
| Hexadecimal: | $1 B$ | $3 A$ | |

Explanation:

This command is used to recover original character in character set. This character has been replaced by user-defined character through command ESC \% previously. However, the used-defined character won't be deleted from RAM and still can be used through ESC \% command.

The BASIC programs to observing the effect of ESC \&, ESC \% and ESC : commands are as below:

10	LPRINT CHR\$(27); "W"; CHR (8);	'Enlarge 8times from Width and Height
20	LPRINT CHR\$(27); "\&"; CHR\$(65);	'ESC \& command
30	LPRINT CHR\$(\&H02); CHR ($\& \mathrm{H} 7 \mathrm{C}$);	CHR\$(\&H40);
40	LPRINT CHR\$(\&HC0); CHR\$(\&H40);	CHR\$(\& H 00)
50	LPRINT CHR\$(27); "\%"; CHR\$(65);	RS(65); CHRS(0); 'ESC \% command
60	LPRINT CHR\$(65); CHR\$(13);	'print user-defined character

70 LPRINT CHR\$(27); CHR\$(58);
80 LPRINT CHR $\$(65)$;
'ESC : command
'print original character

The print result of the above programs is as following:

4.2.5 Graphics Printing and Codepage Choosing Commands

ESC K		Print bit-map graphics			
Format:	ASCII:	ESC	K	n 1	$\mathrm{n} 2 \ldots$. data.....
	Decimal:	27	75	n 1	$\mathrm{n} 2 \ldots$. data.....
	Hexadecimal: 1 B	4 B	n 1	$\mathrm{n} 2 \ldots .$. data.....	

Explanation:

This command is used to print ($\mathrm{n} 2 \times 256+\mathrm{n} 1$) $\times 8$ bit map. The width of this graphics is ($\mathrm{n} 2 \times 256+\mathrm{n} 1$) dots and the height is 8 dots. Each column has 8 dots and can be presented by a 8 -bit byte, the MSB is on the top.
The values of $\mathrm{n} 1, \mathrm{n} 2$ denote a 16 -bit binary data, n 1 is LSB, n 2 is MSB, which mean that the width of printed bitmap through ESC K command is $\mathrm{n} 2 \times 256+\mathrm{n} 1$. In our printer series, $\mathrm{n} 2=0 / 1$. The sum of dots number should be ≤ 384. Data are the bytes content of each column in this graphics. The bytes number should equal to $\mathrm{n} 2 \times 256+\mathrm{n} 1$.
Remark: If the width of printed graphics is beyond the remaining width of current line, the beyond part of graphics won't be printed out and the printed position will change to the next line.
For example: If you want to print two Chinese characters "中文" with ESC K command, the bit- map for the two Chinese is as the below figure shows. Each character is composed by 7×8 dots to 7 columns, there is a space between the two characters, so totally there are 15 columns, then $\mathrm{n} 1=15, \mathrm{n} 2=0$, the 15 -byte data showed in hexadecimal are as follows:
7C, 44, 44, FF, 44, 44, 7C, 00, 41, 62, 54, C8, 54, 62, 41

The BASIC programs for this example are as below:
LPRINT CHR\$ (27); "W"; CHR\$ (4); 'Enlarge the width and height 4 times
LPRINT CHR\$ (27); "K"; CHR\$ (15); CHR\$ (0); 'ESC K command
LPRINT CHR\$ (\&H7C); CHR\$ (\&H44); CHR\$ (\&H44); CHR\$ (\&HFF);
LPRINT CHR\$ (\&H44); CHR\$ (\&H44); CHR\$ (\&H7C); CHR\$ (\&H0);
LPRINT CHR\$ (\&H41); CHR\$ (\&H62); CHR\$ (\&H54); CHR\$ (\&HC8);
LPRINT CHR\$ (\&H54); CHR\$ (\&H62); CHR\$ (\&H41);
LPRINT CHR\$(10); CHR\$ (\&H13); eenter to print text
The print result is as following:

ESC ${ }^{\prime}$
Print Curve I
Format: ASCII: ESC ‘ mL mH n1L n1H n2L n2H......nIL nIH CR Decimal: $2739 \mathrm{~mL} m \mathrm{~m}$ n1L n1H n2L n2H.....nIL nlh 13

Hexadecimal: 1B 27 mL mH n1L n1H n2L n2H.....nIL nlh OD

Explanation:

This command is used to print curve along the paper-feeding direction. The value of m is the number of curves to be printed, $\mathrm{m}=0 \sim 255$.
There are m dots of curve in one horizontal line. n1L n1H n2L n2H......nIL nIH presents the positions of these m curves. The numbers of nIL or nIH should equal to m. Each dot should be within the largest dots numbers of printer. The last CR ("enter") is used to print out this dot line. The whole m curves are printed out through each dot line by n1L n1H n2L n2H......nIL nIH data.
Remark: The dot whose position is beyond the paper width won't be printed out. This command is valid no matter there is OD or not.

ESC
Print Curve II (supplement dots automatically to be full curve)

Explanation:

The using explanation is same as the command for Printing Curve I.

FS P				Print Pre－saved Bitmap	
［Format］	ASCII：	FS	P	n	
	Decimal：	28	80	n	
	Hex：	1 C	50	n	

Explanation：
$0 \leq \mathrm{n} \leq 2$ ，this command is used to print the monochrome bitmap which is pre－saved in the Flash memory of printer．The bitmap in Flash memory can be created and wrote into printer through Setting Tool in PC．The largest width of bitmap is 384dots and the largest height is 1365 dots ．（The bitmap can＇t be over 64 km ．）＂n＂is the number of bitmap．
Remark：If the number of bitmap isn＇t defined，this command is invalid．
The bitmap must be monochrome．
This command won＇t be affected by printing mode（underline，character size or reverse white printing）．
If the width of printed bitmap is beyond one line，the beyond part won＇t be printed out．
It needs the special setting tool to download the bitmap．Pls ref．（RMDIIID Setting Tool）．The downloaded bitmap through this method won＇t be low，unless it is covered by other bitmap．

ESC t
Choose Codepage

Format： | ASCII： | ESC | t | n |
| :---: | :---: | :---: | :---: |
| Decimal： | 27 | 116 | n |
| Hexadecimal： | $1 B$ | 74 | n |

Explanation：

$0 \leq \mathrm{n} \leq 45$ ，when n is $0 \times F E$ ，cancel choosing codepage．The character will be printed out according to Codepage Table in Appendix 2．Default $\mathrm{n}=0 \times \mathrm{xFE}$ ，which means no codepage is choosed．
Choose codepage on n page from the following Codepage Table．The value of n is in decimal format．

n	代码页	Code Page
0	CP437［美国，欧洲标准］	CP437［U．S．A．，Standard Europe］
1	KataKana［片假名］	Katakana
2	PC850［多语言］	PC850［Multilingual］
3	PC860［葡萄牙］	PC860［interfaceuguese］
4	PC863［加拿大－法语］	PC863［Canadian－French］
5	PC865［北欧］	PC865［Nordic］
6	WCP1251［斯拉夫语］	WCP1251［Cyrillic］
7	CP866 斯拉夫 2	CP866 Cyrilliec \＃2
8	MIK［斯拉夫／保加利亚］	MIK［Cyrillic／Bulgarian］
9	CP755［东欧，拉脱维亚 2］	CP755［East Europe，Latvian 2］
10	［伊朗，波斯］	Iran
11	保留	reserve

12	保留	reserve
13	保留	reserve
14	保留	reserve
15	CP862［希伯来］	CP862［Hebrew］
16	WCP1252［拉丁语 1］	W CP1252 Latin I
17	WCP1253［ 希腊］	WCP1253［Greek］
18	CP852［拉丁语 2］	CP852［Latina 2］
19	CP858［多种语言拉丁语 1＋欧元符］	CP858 Multilingual Latin I＋Euro）
20	伊朗 II［波斯语］	Iran II
21	拉脱维亚	Latvian
22	CP864［阿拉伯语］	CP864［Arabic］
23	ISO－8859－1［西欧］	ISO－8859－1［West Europe］
24	CP737［希腊］	CP737［Greek］
25	WCP1257［波罗的海］	WCP1257［Baltic］
26	泰 文（与 TM－88 Thai character code 14 同）	Thai
27	CP720［阿拉伯语］	CP720［Arabic］
28	CP855	CP855
29	CP857［土耳其语］	CP857［Turkish］
30	WCP1250［中欧］	WCP1250［Central Eurpoe］
31	CP775	CP775
32	WCP1254［土耳其语］	WCP1254［Turkish］
33	WCP1255［希伯来语］	WCP1255［Hebrew］
34	WCP1256［阿拉伯语］	WCP1256［Arabic］
35	WCP1258［越南语］	WCP1258［Vietnam］
36	ISO－8859－2［拉丁语 2］	ISO－8859－2［Latin 2］
37	ISO－8859－3［拉丁语 3］	ISO－8859－3［Latin 3］
38	ISO－8859－4［波罗的语］	ISO－8859－4［Baltic］
39	ISO－8859－5［斯拉夫语］	ISO－8859－5［Cyrillic］
40	ISO－8859－6［阿拉伯语］	ISO－8859－6［Arabic］
41	ISO－8859－7［希腊语］	ISO－8859－7［Greek］
42	ISO－8859－8［希伯来语］	ISO－8859－8［Hebrew］
43	ISO－8859－9［土耳其语］	ISO－8859－9［Turkish］
44	ISO－8859－15［拉丁语 9］	ISO－8859－15［Latin 3］
45	［泰文 2］	Thai2

4．2．6 Initialization Commands

ESC＠

Format： | ASCII： | ESC | ＠ |
| ---: | :---: | :---: |
| Decimal： | 27 | 64 |

Explanation:

This command is to initialize the following contents of the printer:
-Clear the data in the print buffer;
-Restore the default;
-Delete user-defined characters.

4.2.7 Data Control Commands

CR		Carriage Return	
Format:	ASCII:	CR	
	Decimal:	13	
	Hexadecimal:	OD	

Explanation:

When the "CR" command is sent to printer, all data in the print buffer will be printed out and paper will be fed one line.

NUL		NUL
Format:	ASCII:	NUL
	Decimal:	0
	Hexadecimal:	00

Explanation:

NUL command is used as the final code in some commands such as ESC B, ESC D, ESC\% and ECS ', to denote these commands are over. NUL command is ignored when used alone.

4.2.8 Chinese Character Print Commands

The command to print Chinese character is FS standard command. All Level I\&II Chinese characters and graphics, etc in 16dots\&24dots Chinese character library are according to Chinese National Standard GB2312-80. For 24dots, there are only graphics, symbols, etc I A1 and A9 zone are 24dots. Each Chinese character has two bytes. Big5 characters with 16dots are in Traditional Chinese characters library.
The following is the detailed of Chinese Character Print Commands:

FS \&		Select Chinese Print Mode	
Format:	ASCII:	FS	$\&$
	Decimal:	28	38
	Hexadecimal:	1C	26

Explanation:

After printer received this command, it will switch from ASCII character print mode to Chinese character print mode. Using GB Chinese Character Library I\&II.

Notice: This command is used to switch printer into Chinese Mode when printer is in normal printing mode, but won't be saved after power off. Only after setting through Setting Tool, the result can be saved.

FS

Cancel Chinese Print Mode
Format: ASCII: FS
Decimal: 2846
Hexadecimal: 1C 2E
Explanation:
After printer received this command, it will switch from Chinese character print mode to ANK characters print mode.

Notice: This command is used to switch printer into ANK characters print mode when printer is in normal printing mode, but won't be saved after power off. Only after setting through Setting Tool, the result can be saved.

		Fet Chinese Double Width Print	
Format:	ASCII:	FS	SO
	Decimal:	28	14
	Hexadecimal:	$1 C$	0 E

Explanation:

Characters following this command are printed at twice their normal width, does not enlarge the height.

Notice: this command is valid only in one line.

FS DC4		Cancel Chinese Double Width Print	
Format:	ASCII:	FS	DC4
	Decimal:	28	20
	Hexadecimal:	1 C	14

FS W		Set the Enlarging Multiple of Chinese Character			
Format:	ASCII:	FS	W	n	
	Decimal:	28	87	n	

\qquad

Explanation:

Characters following this command are printed at n times of their normal width and height, $\mathrm{n}=1 \sim 8$

FS J			Set Vertical Print
Format: ASCII:	FS	J	
Decimal:	28	74	
Hexadecimal:	1 C	4 A	

Explanation:

This command is to print Chinese characters vertically, which is that to print characters by rotating 90° at anticlockwise direction.

FS K
Set Horizontal Print
Format: ASCII: FS K
Decimal: 2875
\qquad
Explanation:
This command is to print Chinese characters horizontally, if have not set rotation, the Chinese characters will be printed horizontally, that is normal print status.

FS I
Set Chinese Character Rotational Print
Format: ASCII
Decimal: $28 \quad 73$ n

Hexadecimal: 1C 49 n

Explanation:

This command is to rotate Chinese characters, the values of n are as following (Default is 180°):

n	Characters rotated at anticlockwise direction
0	0°
1	90°
2	180°
3	270°
other	invalid

[^2]| Decimal: | 28 | 45 | n |
| ---: | :--- | :--- | :--- |
| Hexadecimal: | 1 C | 2 D | n |

Explanation:

The specified Chinese characters after this command are printed with underline. When LSB $\mathrm{n}=1$, underline selected; when LSB $\mathrm{n}=0$, it canceled.

Remark: Only LSB of n is valid. Default $n=0$. This command is valid for both characters and Chinese.

		Chinese Character with Up-line Print	
Format: ASCII:	FS	+	n
Decimal:	28	43	n
Hexadecimal:	1 C	2 B	n

Explanation:
The specified Chinese characters after this command are printed with up-line. When LSB $\mathrm{n}=1$, up-line selected; when LSB $\mathrm{n}=0$, it canceled.

Remark: Only LSB of n is valid. Default $n=0$. This command is valid for both characters and Chinese.

ESC "					Hex Mode Print
Format:	ASCII:	ESC	$"$	n	
	Decimal:	27	34	n	
	Hexadecimal:	1 B	22	n	

Explanation:

When LSB $n=0$, cancel hex mode print; when LSB $n=1$, hex mode print is valid.
When in hex mode print, all the commands and data the host sent to the printer will be printed in hex codes.
Hex mode print will be carried out only when the print buffer is full.
Notice: only LSB of n is valid, default $n=0$

4.2.9 Real-time Commands

DLE EOT n

Format: ASCII:	DLE	EOT	n
Decimal:	16	4	n
Hexdecimal:	10	04	n

Explanation:

Transmits the selected printer status specified by n in real-time, according to the following parameters:
$\mathrm{n}=1$: Transmit printer status
$\mathrm{n}=2$: Transmit off-line status n
= 3: Transmit error status
$\mathrm{n}=4$: Transmit paper sensor status
-The printer returns the related status at once upon receiving it.
-This command should not be used within the data sequence of another command that consists of 2 or more bytes.
-The printer transmits the current status. Each status is represented by one byte data.

- The printer transmits the status without confirming whether the host computer can receive data.
-The printer executes this command at once upon receiving it.
-This command is valid only for serial interface printer. The printer will execute this command at once after receiving it, no matter what status the printer is in.
$\mathrm{n}=1$: Printer status

Bit	0/1	HEX	Decimal	Function
0	0	0	0	Fixed to 0
1	1	2	2	Fixed to 1
2	0	0	0	Fixed to 0
3	0	0	0	On-line
	1	8	8	Off-line
4	1	10	16	Fixed to 1
5,6	-	-	-	Undefined
7	0	0	0	Fixed to 0

$\mathrm{n}=2$: Off-line status

Bit	$0 / 1$	HEX	Decimal	Function
0	0	0	0	Fixed to 0
1	1	2	2	Fixed to 1
2	0	0	0	Fixed to 0
3	0	0	0	Non-pressing paper FEED button
	1	8	8	Pressing paper FEED button
	1	10	16	Fixed to 1
5	0	0	0	Paper exists
	1	20	32	Paper lack
	0	0	0	No error status
7	1	40	64	Error status
7	0	0	0	Fixed to 0

$\mathrm{n}=3$: Error status

Bit	$0 / 1$	HEX	Decimal	Function
0	0	0	0	Fixed to 0
1	1	2	2	Fixed to 1
2	-	-	-	Undefined
3	0	0	0	Fixed to 0
4	1	10	16	Fixed to 1
5	0	0	0	Fixed to 0
6	0	0	0	Printing head with normal temperature
	1	40	64	Printing head with over- heat temperature
	0	0	0	Fixed to 0

$n=4$: paper feeding status

Bit	$1 / 0$	HEX	Decimal	Function
0	0	0	0	Fixed to 0
1	1	2	2	Fixed to 1
2,3	0	0	0	Fixed to 0
4	1	10	16	Fixed to 1
5,6	0	0	0	Paper exits
	1	60	96	Paper lack
	0	0	0	Fixed to 0

4.2.10 Bar Code Printing Commands

GS k m d1...dk NUL
Print Barcode

Format: (1)ASCII
Decimal:
Hexadecimal:
(2)ASCII:

Decimal:
Hexadecimal:

GS
29
1D
GS
29
1D
k
107
m
d1...d k NUL
m d1...dk 0
6B
m
m
m
m
m n
characters will be managed as the common characters.
When JAN13 (EAN13) is chosen, after 13bytes barcode data is received, the other characters will be managed as the common characters.
When JAN8 (EAN8) is chosen, after 8bytes barcode data is received, the other characters will be deal with as the common characters.
The numbers of ITF code data must be even number. If odd numbers of barcode data is input, the last one will be ignored.
Explanation for command (2):
n is used to denote the number of barcode data. Printer will deal with the last n bytes data as the barcode data.
If n is beyond the specified range, the printer will not deal with this command and just deal with the data as the common data.
Explanation:

- If barcode data d is beyond the specified range, this command is invalid.
- If the barcode is beyond printing zone at horizontal direction, invalid.
- No matter how much the line height is set by command ESC 1 n, paper feeding length will be same with the barcode height.
- This command is valid only that there is no data in the printing buffer. If there is data in printing buffer, this command will be ignored.
- After printing barcode, the printing position will be set on the first line.
- This command won't be affected by Print Mode Setting (such as bold printing, duplicate printing, underline, character size, reverse white printing, etc), but will be affected by Invert Printing.
When CODE93 ($m=72$) is choose:
When printer print HRI character, ($\quad+$ one alphabet character) is used as one control character ($<00>\mathrm{H}$ to $<1 \mathrm{~F}>\mathrm{H}$ and $<7 \mathrm{~F}>\mathrm{H}$).
Conversion form between control character and HRI character is as below,

Control character			HRI character	Control character			HRI character
ASCII	Hex	Decimal		ASCII	Hex	Decimal	
NUL	00	0	■ U	DLE	10	16	- P
SOH	01	1	- A	DC1	11	17	■ Q
STX	02	2	- B	DC2	12	18	■ R
ETX	03	3	- ${ }^{\text {c }}$	DC3	13	19	- S
EOT	04	4	■	DC4	14	20	-T
ENQ	05	5	■E	NAK	15	21	■ U
ACK	06	6	-F	SYN	16	22	- V
BEL	07	7	■ G	ETB	17	23	- W
BS	08	8	■ H	CAN	18	24	■ ${ }^{\text {- }}$
HT	09	9	$\square 1$	EM	19	25	■ Y
LF	0A	10	- J	SUB	1A	26	■ Z
VT	0B	11	■ K	ESC	1B	27	- ${ }^{\text {A }}$
FF	OC	12	■ L	FS	1C	28	- B
CR	OD	13	■ M	GS	1D	29	- ${ }^{\text {c }}$
SO	OE	14	- N	RS	1E	30	■ D
SI	0F	15	■ 0	US	1F	31	■ E
				DEL	7F	127	- T

When CODE128 ($m=73$) is choose:

- Pls refer to Appendix 5 - Related information and characters set of CODE128.
- When CODE128 is used, pls encode according to the below structions:

1. Do choose characters set (one of CODE A, CODE B and CODE C) before the barcode data.
2. Choosing characters set is finished through sending character " $\{$ " to combine with the other character; ASCII character " $\{$ " is finished by sending character " $\{$ " twice.

Specified Character Set	Sending Data		
	ASCII	Hex	Decimal
SHIFT	$\{$ S	$7 \mathrm{~B}, 53$	123,83
CODE A	$\{\mathrm{A}$	$7 \mathrm{~B}, 41$	123,65
CODE B	$\{\mathrm{B}$	$7 \mathrm{~B}, 42$	123,66
CODE C	$\{\mathrm{C}$	$7 \mathrm{~B}, 43$	123,67
FNC1	$\{1$	$7 \mathrm{~B}, 31$	123,49
FNC2	$\{2$	$7 \mathrm{~B}, 32$	123,50
FNC3	$\{3$	$7 \mathrm{~B}, 33$	123,51
FNC4	$\{4$	$7 \mathrm{~B}, 34$	123,52
"\{"	$\{\{$	$7 \mathrm{~B}, 7 \mathrm{~B}$	123,123

[Example]: Printing"No. 123456"
In this example, printer will print "No." by CODE B, and print the other numbers by CODE C: GS k 731012366781114612367123456

- If it is not the choosing of characters set at the beginning of barcode data, the printer will stop dealing with this command and deal with the other data as the common data.
- If the combination by " $\{$ " and that following character is not in the above form, the printer will stop dealing with this command and deal with the other data as the common data.
- If the character received by printer is not barcode characters set data, the printer will stop dealing with this command and deal with the other data as the common data.
- When printer prints HRI characters, it doesn't print shift character and choosing data in characters set.
- Function characters in HRI character won't be printed.
- Control characters($<00>\mathrm{H}$ to $<1 \mathrm{~F}>\mathrm{H}$ and $<7 \mathrm{~F}>\mathrm{H}$)in HRI character won't be printed.

Pls be sure the space at both left and right side of barcode. The space will be different according to the different barcode.

Pls refer to GS H, GS h, GS w, Appendix 5.

Explanation: $0 \leq n \leq 3,48 \leq n \leq 51$. When printing barcode, choosing printing position for HRI characters.
n can appoint the printing position of HRI:
$\mathrm{n} \quad$ Printing position
0,48 Don't print
1, 49 Above barcode
2, 50 Below barcode
3,51 Both above and below barcode
HRI is note character for barcode content. Default value: $\mathrm{n}=0$.
Pls refer to GS k
Remark: if n is in other value, it is invalid.
GS h n Set Bar code Height

Format:	ASCII:	GS	h	n
Decimal:	29	104	n	
Hexadecimal:	$1 D$	68	n	

Explanation: Set the height of printed bar code. $n=0 \sim 255$, unit is dot. If $n=0$, it is 256 dots.
Default value $\mathrm{n}=60$.

GS w	n		Set Bar code Width		
Format :	ASCII :	GS	w	n	
	Decimal:	29	119	n	
	Hexadecimal:	1D	77	n	

Explanation: $2 \leq n \leq 6$ (the other value of n is invalid). Set the horizontal module width of
barcode. The detail is as below,
n Width of single basic Width of double basic module module (mm) Narrow basic Wide basic module (mm) module(mm)
$\begin{array}{llll}2 & 0.25 & 0.25 & 0.625\end{array}$
$\begin{array}{llll}3 & 0.375 & 0.375 & 0.875\end{array}$
$\begin{array}{lll}4 & 0.5 & 0.5\end{array}$
1.25
$5 \quad 0.625$
0.625
1.625
$6 \quad 0.75$
0.75
1.875

Single basic module barcode: UPC-A, UPC-E, JAN13 (EAN13), JAN8 (EAN8), CODE93, CODE128
Double basic module bar code: CODE39, ITF, CODABAR
Default value: $\mathrm{n}=3$. Pls refer to $G S \mathrm{k}$.

Chapter 5 Using and Maintenance

5.1 Printing Head Maintenance

In order to guarantee the normal work of the printer, pls notice that do not disassemble the printing head. If the outer case of printer is not used, pls pay more attention to protect the printing head.

1. If you do not use the printer for a long time, please don't put through the printer on the power.
2. If the printer works abnormally, please turn off the printer power.
3. The used power must meet the requirements, otherwise it will be disadvantageous for the print head.
4. While changing the paper roll, please notice whether there is paper scrap on the print head. If so, please blow gently.
5. Keep the circuit board of the printer clean and dustless.
6. When the thermal printer can't print clearly, the printing head can be wiped by alcohol cotton ball.

5.2 Other

Please also notice the following aspects:

1. Don't insert and pull out the chip. If there is abnormity, please hand over to the producer for repairing.
2. When you suppress to join the electric wire by yourself, pls do pay attention to the interface of printer - parallel interface or serial interface, to avoid the wrong connection with the host computer.

Chapter 6 Printer Using under Windows

The version of printer's driver software is SP-DRV211. The manual for driver software and installation can be downloaded from our website. Do not introduce the details here.

Remark: During installing driver, choose the printer model " 58 thermal series". The other details can be checked from Installation Manual.

Appendix 1 Valid Codes Form under ANK printing

The serial numbers of valid codes are from 00H to OFFH under ANK printing, among which $00 \mathrm{H}-1 \mathrm{FH}$ are control codes and $20 \mathrm{H}-0 \mathrm{FFH}$ are character codes. Character codes are composed by two characters sets. The character codes of each character set are all in 20H-0FFH permutation.

Characters Set 1

	0	1	2	3		4	5	6		7	8	9		A	B	C		D	E	F					
2		$!$	＂	\＃		\＄	8	\＆			（	（）		＊	＋			－	．	／					
3	0	1	2	3		4	5	6		7	8	9		：	；	＜		$=$	＞	？					
4	9	A	B	c		D	E	F		G	H	1		J	K	L		M	N	0					
5	P	Q	R	S		T	U	V		V	X	Y		Z	［	$\$ & & ］ & 1 & － \hline 6 & ． & a & b & c & & d & e & f & & g & h & i & & j & k & 1 & & n & n & o \hline 7 & p & q & r & 5 & & t & 1 & v & & ＊ & x			z	（			\}		
8	0	－	\rightarrow	三		四	五	六		t	八	九		$+$	元	年		月	H	$¥$					
9	ε	§	t	\rightarrow		\wedge	\pm	\div	\div	∞	\square	．		－	\square			3	2						
A	a	β	y	δ		ε	ζ			θ	λ	1		v	Ω			π	ρ	σ					
B	τ	Φ	ψ	ω		Γ	\triangle	Π	Π	Σ	Ψ	\bigcirc		E	Θ	Λ		ϕ	\uparrow	\angle					
C	［	二	\square	$]$		－	－	I		1	－			Γ	L	－		\square	\times	\times					
D	［	二	\square	コ		－	－	1		1	／			Γ	L	」		7	－	I					
E	」	7	Γ	L		\perp	T		F	－1	－	1		\square	\square	－		－	＜	＞					
F	－					－			1	I	${ }^{*}$			F	L										

Characters Set 2：

	0	1	2		3	4	5		6	7	8	9		A	B	C	D		E	F
2	而	千	万		II	${ }^{\circ}$	${ }^{\mathrm{F}}$		－1	4		$1 / 2$		$1 / 3$	1／4	T	\times		\checkmark	\perp
3	／／	｜｜	u		ก	由	c		\supset	E	\＆	∇	∇	v	a	5	9		\bigcirc	\because
4	\therefore	＝	\cong		\cdots	\neq	∞		s	\geqslant	＊	＊		\＆	우	\ddagger	\dagger		\％	：：
5	\％	a		1	）	¢	8		『	』	『	］		\sim	．．	0			－	4
6	4	7	1		$\dot{\square}$	工	＊		力	＊	夕	夕		$=$	4	＊	＊		4	\geqslant
7	夕	＊	\％		＊	卜	＋		$=$	π	ネ	，	，	\wedge	E	7	入		＊	マ
8	ミ	4	＊		モ	P	\perp		\exists	5	リ	n		\checkmark	\square	7	4		I	7
9	ン	7	？		\pm	＊	＊		工	＂	\％			\bigcirc	E	д	E		Ж	3
A	и	й	л		L	4	II		щ	b	ы	3		10	q	6	§		è	\varnothing
B	－	9	0		e	á	ä		à	ă	S	ê		ë	è	i	i		i	Ã
C	A	E	æ		$\not \subset$	0	0		0	0	U̇	y		Ö	Ü	K			f	ó
D	1	\bigcirc	ù		ก̄	N	a		\bigcirc	i	9	12		e	à	ả			à	S
E	ê	ė	è	d	i	i	t		A	A	É	＊		A	0	Ó	0		$\hat{0}$	Ù
F	y	0	Ü		＊	P	f		á	I	$\bar{\delta}$	u		ก̄	N	a	9		i	n

Appendix 2 Valid Codes Form under Chinese printing

The serial numbers of valid codes are from 00 H to 0 FFH under Chinese printing，among which $00 \mathrm{H}-1 \mathrm{FH}$ are control codes and $20 \mathrm{H}-0 \mathrm{FFH}$ are character codes．

HEX	0	1	2	3	4	5	6	7	8	9	A	B	C	D	E	F
2		！	＂	\＃	\＄	\％	\＆	，	（	）	＊	＋	，	－	．	／
3	0	1	2	3	4	5	6	7	8	9	：	；	$<$	$=$	＞	？
4	（a）	A	B	C	D	E	F	G	H	I	J	K	L	M	N	O
5	P	Q	R	S	T	U	V	W	X	Y	Z	［	\backslash	］	\wedge	－
6	，	a	b	c	d	e	f	g	h	i	j	k	1	m	n	0
7	p	q	r	S	t	u	v	W	X	y	Z	\｛	｜	\}	\sim	
8	$€$	ü	é	â	ä	à	å	ç	ê	ë	è	̈	̂̂	ì	Ä	\AA
9	É	E	FE	ô	\ddot{O}	ò	û	ù	y	$0 ̈$	Ü	¢	£	$¥$	Pr	f
A	á	í	ó	ú	n	N	a	\bigcirc	¿	Γ	7	1／2	1／4	i	《	》
B		※＂	濫	1	\dagger	＝	－1	71	7	\dagger	\｜	7	」	لا	\pm	7
C	L	\perp	T	F	－	＋	k	IV	L	「	」	\bar{T}	｜L	$=$	㖘	\perp
D	\Perp	〒	π	แ	L	F	Π	H	\＃	」	Γ		\square	1	I	\square
E	α	β	Γ	π	Σ	σ	μ	τ	Φ	θ	Ω	δ	∞	φ	\in	\cap
F	\equiv	\pm	\geqslant	\leqslant	\uparrow	J	\div	\approx	－	－	－	$\sqrt{ }$	n	2	\square	

Appendix 3 Printing Commands Form

Decimal	Hexadecimal	Symbol\&Format	Function	Page
0	0	NUL	Ending Mark	29
10	OA	LF	FEED LINE	18
13	OD	CR	Carriage Return	15
164 n	1004 n	DLE EOT n	Real-time status transmission	29
2734 n	1B 22 n	ESC " n	Hex Mode Print	32
2737 n	1B 25 n	$\begin{aligned} & \text { ESC } \% \mathrm{~m} 1 \mathrm{n} 1 \ldots \ldots \mathrm{mk} \\ & \mathrm{nk} 00 \end{aligned}$	Replace User-defined Character	26
2738	1B 26	ESC \& m n1 n2......n6	User Define Character	25
2739	1B 27	ESC‘ m ...nlL nlH CR	Print M Curve dots (dashed)	28
2743 n	1B2B n	$E S C+n$	Select/prohibit Up-line Print	23
2744	1B 2C	ESC , m...nIL nIH CR	Print M Curve dots (full line)	28
2745 n	1B 2D n	ESC - n	Select/cancel Underline Print	23
2749 n	1B31 n	ESC 1 n	Set n Dot-line Spacing	16
2754	1B 36	ESC 6	Choose Characters Set 1	25
2755	1B 37	ESC 7	Choose Characters Set 2	25
2758	1B 3A	ESC :	Recover Character in Character Set	26
2764	1B40	ESC @	Initialize Printer	28
2766	1B 42	ESC B n1...nkNUL	Set Vertical Tab Value	17
2768	1B 44	ESC D n1...nk NUL	Set Horizontal Tab Value	16
2774 n	1B 4An	ESC J n	n Dot Line Feed	18
2775	1B 4B	ESC K n1...n2...data	Print bit-map graphics	15
2781 n	1B 51 n	ESC Q n	Set Right Margin	27
2785 n	1B 55 n	ESCUn	Enlarge Width	20

2786 n	1B 56 n	ESC V n	Enlarge Height	21
2787 n	1B 57 n	ESC W n	Enlarge Width and Height	21
2799 n	1B63 n	ESC C n	Select/prohibit Reverse Print	22
$\begin{array}{lll} \hline 27 & 102 \mathrm{~m} \\ \mathrm{n} & & \end{array}$	1B66m n	ESC fmn	Print Blank Characters or Lines	24
27105 n	1B69 n	ESC in	Select/prohibit Reverse White Print	19
27108 n	1B6C n	ESCIn	Set Left Margin	24
27112 n	1B $70 n$	ESC P n	Set Character Space	19
27116 n	1B 74 n	ESCtn	Choose Codepage	21
2814 n	1C 0En	FS SO n	Set Chinese Double Width Print	26
2820	1C 14	FS DC 4	Cancel Chinese Double Width Print	30
2838	1C26	FS \&	Select Chinese Print Mode	30
2843 n	1C 2B n	FS + n	Chinese Character with Up-line Print	29
2845 n	1C 2D n	FS - n	Chinese Character with Underline Print	31
2846	1C 2E	FS	Cancel Chinese Print Mode	31
2873 n	1C $49 n$	FS In	Set Chinese Character Rotational Print	30
2874	1C 4A	FS J	Set Vertical Print	31
2875	1C 4B	FS K	Set Horizontal Print	30
2880 n	1 C 50 n	FS P n	Print Pre-saved Bitmap	31
2887 n	1C 57 n	FS W n	Set the Enlarging Multiple of Chinese Character	25
2972 n	1D 48 n	GS H n	Choose printing position of HRI character	30
29104 n	1D 68 n	GS h n	Set Barcode Height	37
29107 n	1D 6B n	GS kn	Print Barcode	37
29119 n	1D 77 n	GS w n	Set Barcode Width	34

Appendix 4 Single chip microcomputer interface example

PC hardware recommended schematic:

Sugest Serial connect 3 pins, Receive(RXD), Busy(CTS), Power(GND)

IDC10PIN serial socket pin assignment

PDK-5 single Serial socket pin assignment

Serial interface each cords number define shown as figure 3-1:

Signal Name	IDC10 socket cords number	5PIN socket cords number	Source	Instruction
RXD	3	3	PCB board	Printer receive data from computer
TXD	2	2	printer	Printer send data to computer, when use X -ON/X-OFF handshaking protocol agreement, the printer will send control code

Each pin signal is defined as shown

Pin No.	Signal name	Source	Explain
2	RXD	computer	Printer receive data from computer
3	TXD	printer	Printer send control code XON/XOFF and data to computer.
5	CTS	printer	When the signal show "MARK", it is means the printer is busy and can not receive data, when the signal show " SPACE", it is mean the printer get ready and can receive data..
6	DSR	printer	Signal show "SPACE" means printer online
7	GND		Signal ground
8	DCD	printer	Same as CTS

Compilation proaram is as follows:

ORG 0000H			;
Strat:	$\begin{aligned} & \text { mov tmod,\#20h } \\ & \text { mov tll,\#0fdh } \end{aligned}$;	Initialize the serial port
	mov th1,\#0fdh	;	Baud rate 9600
	mov scon,\#0c0h setb tr1	;	Mode 3
$\begin{array}{rc} \text { main:mov } & \text { r7,\#0 } \\ \text { mov } & \text { dptr,\#date } \end{array}$			
loop:mov a,r7			
	move a,@a+dptr	:	Get number
	inc r7		
	cjne a,\#00h,loop1	;	End mark 00H
loop1:call sczj			
sjmp loop			
sczj: jb cts,\$; Busy			
mov c,psw. 0			
	;cpl c	:	Odd parity, C reverse
	mov tb8,c		Even parity
mov sbuf, a Even parity			
jub ti,\$;	Waiting for sendingg finish
clr ti			
ret			
date:; db 1bh, 40h			
db 'sprinter rs 232 test'			
db 0dh, 00 h			
ret			
end			

Program as follows:

```
#include creg52.h
    gned char inbuf1[19]="sprinter rs232 test";
    busy = P3^0;
void send_char_com(unsigned char ch)// Send a word to Serial
{while(busy); //
//TB8=P; //住 Busy
TB8=!P; //奇 Odd parity
SBUF=ch; Even parity
```



```
TI=0;
}
void send_string_com(unsigned char *str) // Serial sending chracters
{
unsigned int k=0;
do
{
send_char_com(*(str+k));
k++;
}while(k<19);
}
main(0
{
SCON=0xc0; //) Way 3
TMOD=0x20; //
TH1=0xfd; // Baud Rate 9600
TR1=1;
send_char_com (0x1b);
send_char_com (0x40); // Printer initialization command
send_string_com(inbuf1);
send_char_com (0x0a);}
```

Master machine I / O port mode recommended schematic:

IDC26 Parallel interface socket pin assignment

Parallel interface each cords number define shown as below:

Cords No.	Signal	Direction	Instruction
1	ISTB	input	Gate trigger, rising along the read data.
3	DATA1	Input	
5	DATA2	Input	
7	DATA3	Input	Those signals represent the message from
9	DATA4	Input	1 to 8, when the logic is "1" of each signal,it
11	DATA5	Input	is high level, logic show"0"mean low level.
13	DATA6	Input	
15	DATA7	Input	
17	DATA8	input	

19	IACK	output	Pulse reply," low" level mean the date has been received and printer already to receive next date.
21	BUSY	output	"high" level mean printer is " busy" can not receive data
23	IPE	output	Via resistance drop down to " low" level mean have paper
25	SEL	---	Via resistance pull up to " high" level mean printer online
4	output	Via resistance pull up to " high" level mean no trouble	
$2,6,8$	NC	---	Not connected
$10,12,14,16$,	GND	---	Ground connect, logic"0" level
$18,20,22,24$	--		

DB-25 Parallel interface
Parallel interface each cords number define shown as below:

Cords No.	Signal	Direction	Instruction
1	ISTB	input	Gate trigger, rising along the read data.
2	DATA1	Input	
3	DATA2	Input	
4	DATA3	Input	Those signals represent the message from
5	DATA4	Input	1 to 8, when the logic is "1" of each signal,it
6	DATA5	Input	is high level, logic show"0"mean low level.
7	DATA6	Input	
8	DATA7	Input	

9	DATA8	input	
10	IACK	output	Pulse reply," low" level mean the date has been received and printer already to receive next date.
11	BUSY	output	"high" level mean printer is " busy" can not receive data
12	IPE	output	Via resistance drop down to " low" level mean have paper
13	SEL	---	Via resistance pull up to " high" level mean printer online
15	IERR	output	Via resistance pull up to " high" level mean no trouble
$14 / 16 / 17$	NC	---	Not connected
$18--25$	GND	---	Ground connect, logic"0" level

ㅁ

DB-36 Parallel interface
Parallel interface each cords number define shown as below:

Cords No.	Signal	Direction	Instruction
1	ISTB	input	Gate trigger, rising along the read data.
2	DATA1	Input	
3	DATA2	Input	
4	DATA3	Input	Those signals represent the message from
5	DATA4	Input	1 to 8, when the logic is "1" of each signal,it
6	DATA5	Input	is high level, logic show"0"mean low level.
7	DATA6	Input	
8	DATA7	Input	

9	DATA8	input	
10	IACK	output	Pulse reply," low" level mean the date has been received and printer already to receive next date.
11	BUSY	output	"high" level mean printer is " busy" can not receive data
12	output	Via resistance drop down to " low" level mean have paper	
13	---	Via resistance pull up to " high" level mean printer online	
32	IERR	output	Via resistance pull up to " high" level mean no trouble
$14,15,17,18$,	NC	---	Not connected

Compilation program as follows:

STB	bit	p3.4
BUSY	BIT	P3.5
PDATA	BIT	P2
		ORG

strat:
LOOP:MOV DPTR.\#DATE
LOOP1:CLR A
MOVC A, @A+DPTR
CJNE A,\#00H,GO1 ; Printing finish mark SJMP LOOP
GO1: LCALL PRINT
INC DPTR
SJMP §
PRINT:PUSH DPH
PUSH DPL
JB BUSY,\$; Busy
MOV P2,A
CLR STB : Send STB rising edge
NOP
NOP
NOP
NOP
SETB STB
NOP
NOP
NOP
NOP
POP DPL
POP DPH
RET
date: db 1bh,40h
db 'sprinter test ok^{\prime}
$\mathrm{db} 0 \mathrm{dh}, 00 \mathrm{~h}$
ret

C program as follow:
\#include reg52.h
\#include cintrins h .
unsigned char inbuf1[16]="sprinter test ok";
sbit busy $=$ P3 ${ }^{\wedge} 5$;
sbit STB=P3^4;
\#define P DATA P2
void send_char_P(unsigned char ch)// Send a character to
\{
while(busy); // Busy
P2=ch;
STB=0; $/ / \leqslant$ STB rising edge
_nop_O; \quad Sdjust STB mulse
_nop_0;
_nop_0;
nop_0;
$\overline{\mathrm{S}} \mathrm{TB}=1$;
_nop_0;
-nop_0;
_nop_0;

- nop_0;
\}
void send_string_ P (unsigned char *str) // Serial sending string
\{
unsigned int $\mathrm{k}=0$;
do
\{
send_char_ $\mathrm{P}\left({ }^{*}(\mathrm{str}+\mathrm{k})\right)$;
k+;
\}while($k \leqslant 16$);
\}
main()
\{
send_char_P (0x1b);
send ${ }^{-}$char_ $\mathrm{P}(0 \times 40)$;
send_string_ P (inbuf1);
send_char_ $\overline{\mathrm{P}}(0 \mathrm{x} 0 \mathrm{a})$;
\}

Master machine parallel port bus mode recommended schematic:

Compilation program as follows:
wrdata EQU **H : Printer address
BUSY BIT P1.0 ORG 0000H
strat: mov r7,\#0
mov dptr,\#date
loop:mov a,r 7
movc a,@a+dptr
inc r 7
cjne a,\#00h,loop1
sjmp strat : Cycle sending
loop1:call PRINT
sjmp loop
PRINT:PUSH DPH
PUSH DPL
JB BUSY, \$: Busy
MOV DPTR,\#wrdata
MOVX@DPTR.A
POP DPL
POP DPH
RET
date: db 1bh,40h
db 'sprinter test ok'
$\mathrm{db} 0 \mathrm{dh}, 00 \mathrm{~h}$
ret

C language as follows:
Fincruae seg. \angle.n
\#include intrins.h
unsigned char inbuf1[16]="sprinter test ok";
sbit busy $=\mathrm{P} 1^{\wedge} 0$;
unsigned char x data wrchar _at_ $0 \mathrm{x}^{* *} /{ }^{* *}$ define utter add void send_char(unsigned char ch) $/ /$ Parallel send a
\{
while(busy);
wrchar=ch;
\}
void send_string_ P (unsigned char *str) // Parallel send
\{
string
unsigned int $\mathrm{k}=0$;
do
\{
send_char(* $(\mathrm{str}+\mathrm{k}))$;
$\mathrm{k}++;$
\}while($k<16$);
\}
main()
\{
send_char(0 xlb);
send_char(0 x 40);
send_string_ P (inbuf1);
send_char(0x0a);
\}

[^0]: 2-1
 1, Open Button 2, Self Button, Error
 3, Lf Button, Power indicator 4, Paper roll

[^1]: Explanation:

[^2]: FS Chinese Character with Underline Print
 Format: ASCII: FS - n

