SPRT ${ }^{\circledR}$

SP-RMD8

Thermal Micro Panel Printer

User's Manual

Ver 1.07

SP-RMD8A

SP-RMD8B

SP-RMD8C

Beijing Spirit Technology Development Co.,Ltd

Content

Introduction 1
Chapter 1 Feature and Performance 2
1.1 Feature 2
1.2 Performance. 2
Chapter 2 Printer Installation 3
2.1 Printer outline 3
2.2 Outline Dimension. 4
2.3 Paper loading 5
2.4 Instruction of Mounting Installation Ear. 7
Chapter 3 Operating Instruction 8
3.1 Interface connection 8
3.1.1 Serial interface connection. 8
3.1.2 Parallel interface connection 11
3.1.3 Printer Parameters Setting. 12
3.1.4 Power connecting 13
3.2 Indicator and button. 13
3.3 Self-test and Hex printing 14
3.4 Pinter Initialization. 14
Chapter 4 Printing commands 15
4.1 Summary 15
4.2 Commands Description 15
4.2.1 Paper Feeding Commands 15
4.2.2 Format Setting Commands 16
4.2.3 Character Setting Commands 20
4.2.4 User-defined Character Setting Commands 24
4.2.5 Graphics Printing and Codepage Choosing Commands 26
4.2.6 Initialization Commands 29
4.2.7 Data Control Commands. 30
4.2.8 Chinese Character Print Commands 30
4.2.9 Real-time Commands 33
4.2.10 Bar Code Printing Commands 35
Chapter 5 Using and Maintenance 40
5.1 Printing Head Maintenance. 40
5.2 Other 40
Chapter 6Printer Using under Windows 41
Appendix 1 Valid Codes Form under ANK printing 41
Appendix 2 Valid Codes Form under Chinese printing 44
Appendix 3 Printing Commands Form. 45
Appendix 4 Example of MCU Interface 456

Introduction

RRMD8 thermal printer is a smart printer developed and produced by Beijing Spirit Technology Development Co., Ltd. for the 21st century. There are advantages of small volume, light weight, complete functions, fast speed, high definition, artistic appearance, simple operation, convenient connection. It is the most ideal matching product to use in medical equipment, fire-alarm control and other kinds of equipment, etc.

SP-RMD8 panel thermal printer has the same character set 1 and character set 2 as RMDIIIB in the Western characters mode. In Chinese characters mode, it can print $12^{*} 24$ half-width characters and 16 dots according to the Chinese character dot matrix. The 8*16 half-width characters of the array have Chinese characters, $24^{*} 24,16^{*} 16$, and the selection of the second-level fonts, as well as a large number of mathematical symbols, special symbols, graphics, and curves. Partial code characters can be customized by command to change the print line spacing and character size, with self-test function.

SP-RMD8 printer has Windows driver. It can print kinds of characters, Chinese and pictures directly through PC.

Chapter 1 Feature and Performance

1.1 Feature

\diamond Thermal line printing.
\diamond Printing head and circuit together to be convenient for installation.
\diamond With single chip processor. There is standard parallel interface or serial interface, which is convenient to connect with kinds of microcomputers or intelligent equipment.
$>$ There is actual time printing command to print Characters, code, graphics, etc. The commands set is compatible with the traditional printer.
\diamond Support kinds of codepages and pre-saved bitmap printing.
\diamond Self-testing function. All codes can be printed, characters with high definition and beauty.
\diamond Enough receiving buffer 3K.
\diamond Front installation to be convenient for customers to install.
\diamond Printing paper: Width $57.5 \pm 0.5 \mathrm{~mm}$ thermal paper.
\diamond Power request: Broad Input Voltage: DC5V~8.5V Current: 3A.
\diamond Operating temperature: $0 \sim 50^{\circ} \mathrm{C}$
\diamond Can be used in DOS and Windows.
\diamond 8dots/mm, 384dots/line.
\diamond Printing speed: $30 \mathrm{~mm} / \mathrm{s}$.
\diamond Outline dimension (mm) : $\mathrm{W} \times \mathrm{H} \times \mathrm{D}$, please refer to figure 2-2~ figure 2-4 of chapter.

1.2 Performance

\diamond Printing method: thermal line printing.
\diamond Interface: Parallel (CENTRONICS compatible) or Serial (RS-232 , TTL or RS-485).
\diamond Interface connector: IDE20pin plug socket for both serial and parallel interface.
\diamond Universal ESC, FS, GS control code.
\diamond LF button is controlling button for self-test and paper feeding. LF LED is indicator of error alarm and power. Different flickering frequency of indicator has different meanings, please refer to section 3.2 to learn more details.
\diamond Printing paper: D8A: $57.5 \times \phi 20 \mathrm{~mm}(\mathrm{MAX}) ; \quad$ D8B: $57.5 \times \phi 30 \mathrm{~mm}(\mathrm{MAX}) ;$ D8C: $57.5 \times \phi 50 \mathrm{~mm}(\mathrm{MAX})$
\diamond Reliability: MCBF (Average number of trouble-free rows) $(5 \sim 15) \times 10^{6 .}$
\diamond TPH: 50KM
\diamond Operating temperature: $0 \sim 50^{\circ} \mathrm{C}$, relative humidity: $10 \sim 80 \%$.
\diamond Storage temperature: $-20 \sim 50^{\circ} \mathrm{C}$, relative humidity: $10 \sim 90 \%$.

Chapter 2 Printer Installation

2.1 Printer outline

Picture 2-1

1. LF Button, Power indicator, Error indicator
2. Paper Roll
3. Open Door Handle

2.2 Outline Dimension

\diamond Installation dimension: $75.5 \mathrm{~mm} \times 38.5 \mathrm{~mm}(\mathrm{~W} \times \mathrm{H})$ depth:37mm
\diamond Outline dimension: $79.5 \mathrm{~mm} \times 42 \mathrm{~mm} \times 39.5 \mathrm{~mm}(\mathrm{~W} \times \mathrm{H} \times \mathrm{D})$
Picture 2-2 Outline \& Installation dimension of SP-RMD8A

\diamond Outline dimension: $83 \mathrm{~mm} \times 58.5 \mathrm{~mm} \times 45.5 \mathrm{~mm}(\mathrm{~W} \times \mathrm{H} \times \mathrm{D})$
Picture2-3 Outline \& Installation dimension of SP-RMD8B

\diamond Installation size: $80.5 \mathrm{~mm} \times 80.5 \mathrm{~mm}(\mathrm{~W} \times \mathrm{H}) \quad$ depth: 55.5 mm
\diamond Outline dimension: $85 \mathrm{~mm} \times 85 \mathrm{~mm} \times 57.5 \mathrm{~mm}(\mathrm{~W} \times \mathrm{H} \times \mathrm{D})$

Picture2-4 Outline \& Installation dimension of SP-RMD8C

2.3 Paper loading

Pull the hand shank to open the paper case cover. Close the cover after loading the paper, as showed in Picture2-5.

Picture 2-5

2.4 Instruction of Mounting Installation Ear

Put the printer into the installation hole of host panel at customer's side and open the paper case cover, as showed in Picture2-6. Then screw up the bolts in a clockwise direction until the installation ear moves to the position as showed in Picture2-7, the mounting finished.

Notice: Tightening force on bolts can not be over $2 \mathrm{kgf} \cdot \mathrm{cm}$.

Paper case cover

Picture 2-6

Picture 2-7

Chapter 3 Operating Instruction

3.1 Interface connection

3.1.1 Serial interface connection

The serial interface connection of SP-RMD8 is RS-232 interface, whose electrical level is EIA and TTL optional. RTS/CTS and XON/XOFF handshaking protocols are supported. The interface type is IDE20 pin type socket. The PIN assignment showed in Picture3-1:

Picture 3-1 PIN assignment

When the electrical level of printer is TTL, the definition of pins is as showed in Picture3-2:

Signal name	Pin No. of IDE20 Socket	Source	Explanation
RXD	20	Host	Printer receives data from host
TXD	19	Printer	Printer send data to host. When X-ON/X-OFF handshaking protocol is used, printer send Control code X-ON/X-OFF to host.
CTS	18	Printer	When data is 1high, it means printer is too busy to receive data; when data is 0 low, it means printer is ready to receive data.
GND	$2,6,8,12,16$	-	Signal ground

Picture3-2 Definition of PIN assignment of serial interface

When the electrical level of printer is 232 , the definition of pins is as showed in Picture3-3:

Signal name	Pin No. of IDE20 Socket	Source	Explanation
RXD	19	Host	Printer receive data from host
TXD	20	Printer	Printer send data to host. When X-ON/X-OFF handshaking protocal is used, printer send Control code X-ON/X-OFF to host.
DSR	15	Printer	This signal is "SPACE" status and means the printer is online.
CTS	18	When data is 1high, it means printer is too busy to receive data; when data is Olow, it means printer is ready to receive data.	
GND	$2,6,8,12,16$	-	Signal ground

Picture3-3 Definition of PIN assignment of serial interface
If connecting post is two IDC- 10 type sockets, the functions and definitions of PIN assignment are same, the only difference is the electrical level, the definition explanation showed in picture 3-4, picture 3-5:

Picture 3-4 Definition of IDC-10 type socket
Notice: Please do not use these two COM port together.

Signal name	PIN Assignme nt	Source	Explanation
TXD	2	Printer	Printer sends data to host
RXD	3	Host	Printer receives data from host.
CTS	8	Printer	Flow control signal of printer and hardware of host (BUSY signal)
DRS	6	Pinter	Same with CTS
GND	5	-	

Picture 3-5 PIN Assignment of serial port
Notice: (1)"Source" means where the source data comes from.
(2) Non-listed pin No. is empty pin.
(3) 232 electrical level is negative logic. Negative electrical level means data 1 ; while positive electrical level means data 0.

When the electrical level is 485 , the definition of pins is as showed in Picture3-6:

Signal name	Pin No. of IDE20 Socket	Pin No. of IDEC10Socket (COM 1)
A	20	7
B	19	9
GND	$2,6,8,12,16$	5

Picture 3-6 definition of PIN Assignment
Notice: (1)Non-listed pin No. is empty pin.
During serial interface, baud rate and data structure can be set through Setting Tool software. Default factory setting is 9600 bps , 8 bits data bit, no parity and 1bit stop bit.

Baud rate support: 1200, 2400, 4800, 9600, 19200, 38400, 57600, 115200, etc, eight kinds.

There are two handshaking modes optional: One is Mark Control Handshake, the other is X-ON/X-OFF Protocol Handshake. The explanation of these two kinds is as showed in Picture 3-7:

Handshaking Mode	Data Directio n	RS-232C interface signal
Mark Control	data can enter	"BUSY" signal line is in "SPACE" status
	data can't enter	"BUSY" signal line is in "MARK" status
	data can enter	Send X-ON code "11H" on "TXD" signal line
	data can't enter	Send X-OFF code "13H" on "TXD" signal line

Picture3-7 Two handshake methods

3.1.2 Parallel interface connection

The parallel of SP-RMD8 printer is compatible with CENTRONICS standard, and the interface socket is 20-pin flat cable socket, or its substitute for connecting with it. The pin order of parallel port is showed as Picture3-8:

Picture3-8: Pin No. of parallel interface socket
The definition of each pin for parallel interface is as showed in Picture 3-9:

Pin No.	Signal	Direction	Explanation
1	ISTB	In	Strobe pulse to latch data, reading occurs at rising edge.

3	DATA1	In	These signals represents the 1st bit to 8th bit of the parallel data representatively, each signal is at HIGH level when data is logic 1 , and LOW when data is logic 0 .
5	DATA2	In	
7	DATA3	In	
9	DATA4	In	
11	DATA5	In	
13	DATA6	In	
15	DATA7	In	
17	DATA8	In	
20	IACK	Out	Answering pulse, LOW level signal indicates that data have already been received and the printer gets ready to receive the next data.
18	BUSY	Out	HIGH level signal indicates that the printer is BUSY and can not receive data.
19	/PE	Out	HIGH means printer is out of paper; LOW means there is paper
4	SEL	Out	It is raised to "HIGH" level through electric resistance and means the printer is ONLINE.
2, 6, 8	NC	---	Unconnected
10, 12, 16	GND	---	Ground-connected. The logic is "0" level.

Picture 3-9 Definition of parallel PIN assignment
Notice: (1) "In" means sending into the printer;
"Out" means sending out from printer.
(2) The logic electrical level of signal is TTL electrical level.

3.1.3 Printer Parameters Setting

The parameters can be set through software:
"Setting Tool software" can be downloaded from our website. The detailed explanation can be checked from "Setting Tool software".

3.1.4 Power connecting

SP-RMD8: Broad Input Voltage: DC5V~8.5V; Current: 3A
Power socket is like the following figure3-10, PIN assignment of power socket is like below figure 3-11:

Figure 3-10 Power Socket Drawing

PIN Number	PIN Assignment	Instruction
1	VIN	Power Input
2	NC	NC
3	GND	GND

Figure 3-11 PIN Assignment for power socket

3.2 Indicator and button

The function of buttons will be different according to the different working mode of printer. In normal working mode, it is as below:

Paper feeding button (LF): When printer is power on, the button is "online" status. At this time, press【LF】button to feed paper; and loosen button to stop feeding paper.

The indicator for power and error is the same one. (Green)

Indicator status	Explanation
Persistent lighting	power on
Flicker once per second	Lack of paper. Recover to be normal after paper loading.
Flicker twice per second	Printing head over-heat. Recover automatically after the temperature of printing head falling.
Flicker three times per second	The heating plate of printing head broken. Unrecoverable. At this time, the printer needs to be repaired.

3．3 Self－test and Hex printing

Self－test can test whether the printer is normal working or not．If the self－test receipt can be printed out correctly，it means the printer can work normally except the interface with host．Otherwise，the printer needs to be repaired．

The content printed on self－test receipt is Version No．，Interface，Character and other configuration information．

The method of self－test is holding down 【LF】 button and turn on the printer．Then within three seconds，release the button．At this time，the printer will print out self－test receipt．

The method of HEX printing：is holding down【LF】button and turn on the printer．After the indicator flickers three times，loosen the button．The printer will print out＂Hexadecimal Dump＂and enters into Hex printing mode．

The method of quit hex printing：（1）Press 【LF】button constantly three times．Then send 0×00 ；
（2）Restart the printer directly

3．4 Pinter Initialization

There are two methods of printer initialization．One is that through the control code ESC＠，the host sends commands to printer to initialize printer by commands．The other is restarting the printer．

Chapter 4 Printing commands

4.1 Summary

All the printing commands of SP-RMD8 are fully compatible with traditional ESC printing commands. The description form of each command is as following,

Command name Function

Format:	ASCII:	the standard ASCII character sequence
	Decimal:	the Decimal number sequence
	Hexadecimal:	the Hexadecimal number sequence

Explanation: the function of command and usage method
Example: some examples are listed to illustrate the command for better understanding.

The following is the description of each command according to the function of each command.

4.2 Commands Description

4.2.1 Paper Feeding Commands

LF			Feed Line
Format:	ASCII:	LF	
	Decimal:	10	
	Hexadecimal:	OA	

Explanation: The printer prints the current line and feeds paper forwards one line.
Remark: One line means the current character line.

ESC J				n Dot Line Feed	
Format:	ASCII:	ESC	J	n	
	Decimal:	27	74	n	
	Hexadecimal:	$1 B$	$4 A$	n	

Explanation:
The printer feeds paper n dot lines. $n=1 \sim 255$.

This command doesn't send carriage return and feed line. It won't influence the later feed line command.

If you need to feed paper immediately but no carriage return, can use ESC J command.
Line spacing will be enlarged automatically when using commands ESC V, ESC W and FS W for enlarging characters.

ESC 1
Set n Dot-line Spacing
Format: ASCII:
Decimal: $27 \quad 49$ n

Hexadecimal: 1B 31 n
Explanation:
The n dot-line spacing is set for future Line Feed command. $\mathrm{n}=0 \sim 255$
Default setting $\mathrm{n}=3$ for text printing, $\mathrm{n}=0$ for bitmap printing when using ESC K command.
The BASIC programs for observing the effect of this command are as below:
FOR I=1 TO 11 STEP 2
LPRINT CHR $\$(27)$ CHRS(49);CHR\$(I); ' ESC 1 set line spacing
LPRINT "RMWD TEST" ' Print character string and feed line
NEXT I
The print result of the above is as following:

4.2.2 Format Setting Commands

ESC B			Set Vertical Tab Value	
Format:	ASCII:	ESC	B	n1 n2 n3...NUL
	Decimal:	27	66	n1 n2 n3...0
	Hexadecimal:	$1 B$	42	n1 n2 n3...00

Explanation:

The vertical tab positions are entered as $\mathrm{n} 1, \mathrm{n} 2$ and so on. Character NUL is added at the end to indicate that the command is over.
VT command is to carry out vertical tab and the paper is fed to the next vertical position. All input vertical tab positions can be deleted by using this command in ESC B NUL format.
Example: set three vertical tab values at $2^{\text {nd }}$ line, $5^{\text {th }}$ line, $8^{\text {th }}$ line in one page, you can send the following commands:

ASCII:	ESC	B	STX	ENQ	BS	NUL
Decimal:	27	66	2	5	8	0
Hexadecimal:	1B	42	02	05	08	00

The BASIC programs about the above example are as below:
LPRINT CHR\$ (27); "B"; CHR\$ (2); CHR\$ (5); CHR\$ (8) ; CHR\$ (0) ; ‘ESC B command

LPRINT CHRS(11); 'VT command
LPRINT "SPRM1"; 'print character string
LPRINT CHR\$(11);
LPRINT "SPRM2";
LPRINT CHR\$(11);
LPRINT "SPRM3"
'VT command 'print character string
'VT command 'print character string

The print result of the above program is as following:

```
SPRM3
SPRMZ
SpRM1
```

VT			Carry out Vertical Tab Value
Format:	ASCII:	VT	
	Decimal:	11	
	Hexadecimal:	OB	

Explanation:

Feed paper to the next vertical tab position which is set by ESC B command.
Notice: if there is no vertical tab value setting, or the current position equals or is beyond the last vertical tab position, VT command is to feed paper one line only (same to LF command).

ESC D

Set Horizontal Tab Value
Format

ASCII:	ESC	D	n1 n2 n3 ...NUL
Decimal:	27	68	$n 1 \mathrm{n} 2 \mathrm{n} 3 \ldots 0$
Hexadecimal:	$1 B$	44	$\mathrm{n} 1 \mathrm{n} 2 \mathrm{n} 3 \ldots .00$

Explanation:

The horizontal tab positions are entered as n 1 , n 2 and so on, all of which should be within the line width of this model printer. Character NUL is added at the end to indicate that the command is over.
All set horizontal tab positions can be deleted by using this command in ESC D NUL format.
Example: set three horizontal tab values at $2^{\text {nd }}, 9^{\text {th }}$ line, $14^{\text {th }}$ character position in one line,

ASCII:	ESC	D	STX	HT	SO	NUL
Decimal:	27	68	2	9	14	0
Hexadecimal:	1B	44	02	09	0 E	00

The BASIC programs for this example are as below:

LPRINT "12345678901234567890123456789012" 'Ruler
LPRINT CHR\$(27); CHR\$(68);CHR\$(2);CHR\$(9);CHR\$(14); CHR\$(0); 'ESC D command
LPRINT $\operatorname{CHR} \$(9)$; 'HT command
LPRIN "HT1"; 'print character string
LPRINT CHR\$(9);
LPRINT "HT2";
LPRINT CHR\$(9);
LPRINT "HT3";
LPRINT CHR\$(13);
The print result of the above program is as following:

HT
Carry out Horizontal Tab Value
Format: ASCII: HT
Decimal: 9
Hexadecimal: 09

Explanation:

The print position is advanced to the next horizontal tab position which is set by ESC D command.
Remark: If there is no horizontal tab value setting, or the current position equals or is beyond the last horizontal tab position, HT command won't be carried out. If the horizontal tab position is beyond the current line width, HT command won't be carried out, either.

ESC f		Print Blank Characters or Lines			
Format:	ASCII:	ESC	f	m	n
	Decimal:	27	102	m	n
	Hexadecimal:	1B	66	m	n

Explanation:

When $m=0$, ESC f NUL n will command to print n blank characters
When $m=1$, ESC f SOH n will command to print n blank lines. $n=0 \sim 255$.
Remark:
When $m=0$, if the value of n is beyond the current line width, the printer will continue to print blank in the next line.

When $\mathrm{m}=1$, paper will feed n current line heights.
Example: print 6 blank characters in one line, you can send the following commands: ASCII:
ESC f NUL ACK
Decimal: $\begin{array}{lllll}27 & 102 & 0 & 6\end{array}$
Hexadecimal: 1B 6600
Another example: print 6 blank lines, you can send the following commands:
ASCII: ESC f SOH ACK

Decimal:	27	102	01	6
Hexadecimal:	1B	66	01	06

ESC I Set Left Margin
Format: ASCII: ESC | n
Decimal: 27108 n

Hexadecimal: 1B 6C n
Explanation:
The value of n should be in the range from 0 to the line width of this model printer.
Default $n=0$, that means no left margin.
This command sets absolute position, and won't be influenced by character commands ESC U and ESC W.
Example: set left margin value to 12 , you can send the following commands:
commands:
ASCII: ESC 1 ACK Decimal: 27108
Hexadecimal: 1B 6C 0C
The BASIC programs for this example are as below:
LPRINT "1234567890123456" 'Ruler
LPRINT CHR\$(27); CHR\$(108);CHR\$(12); 'ESC 1 command
LPRINT "123456789012345678901234567890"
The print result is as following:
1234567890
12345678901234567890
1234567890123456

ESC Q
Set Right Margin

Format:	ASCII:	ESC	Q	n
	Decimal:	27	81	n
	Hexadecimal:	$1 B$	51	n

Explanation:

The value of n should be in the range from 0 to the line width of this model printer.
Default $\mathrm{n}=0$, that means no right margin.
This command sets absolute position, and won't be influenced by character commands ESC U and ESC W.

After setting this command, the printer will carry out carriage return and feed line as long as the right margin position is reached.
Example: set right margin value to 12 , you can send the following commands:
ASCII: ESC Q ACK
Decimal: $27 \quad 81 \quad 12$
Hexadecimal: 1B 51 OC
The BASIC programs for this example are as below:
LPRINT "12345678901234567890123456789012" 'Ruler
LPRINT CHR\$(27); CHR\$(81);CHR\$(12);
'ESC Q command

ESC P
Set Character Space

Format:	ASCII:	ESC	P	n
	Decimal:	27	112	n
	Hexadecimal.	$1 B$	70	n

Explanation:
This command is used to set space dot between characters, which is also valid for Chinese characters.

Default $n=0$, means no space between characters. (dot is absolute value and won't be influenced by enlarging or narrow commands), $n=0 \sim 255$

4.2.3 Character Setting Commands

ESC U				Enlarge Width	
Format:	ASCII:	ESC	U	n	
	Decimal:	27	85	n	
	Hexadecimal:	$1 B$	55	n	

Explanation:
After inputting this command, the characters, graphics and Chinese characters are printed at n times of normal width, $n=1 \sim 8$. Default $n=1$ when the dots are 24 , while default $n=2$ when the dots are 16 . These are normal printing width.

Remark: $n=1 \sim 8$, the other value of n will be invalid.
The BASIC programs for observing the enlarging effect of this command are as below:
FOR I=1 TO 3
LPRINT "CHR\$ (27); CHR\$ (85);CHR\$ (I); 'ESC U command LPRINT "SPRM"; 'Print character string NEXTI 'CR command
The print result is as following:

Decimal: $27 \quad 86$ n

Hexadecimal: 1B 56 n

Explanation:

After inputting this command, the characters, graphics and Chinese characters are printed at n times of normal height, $n=1 \sim 8$. Default $n=1$ when the dots are 24 , while default $n=2$ when the dots are 16. This command should be sent out at the beginning of one line.

Remark: $n=1 \sim 8$, the other value of n will be invalid.
The BASIC programs for observing the enlarging effect of this command are as below: FOR I=1 TO 3
' from 1 to 3 times
LPRINT CHR\$ (27); CHR\$ (86); CHR\$ (I); 'ESC V command
LPRINT "SPRM"; 'Print character string

NEXT I

The print result is as following:

ESC W		Enlarge Width and Height	
Format: ASCII::	ESC	W	n
Decimal:	27	87	n
Hexadecimal:	1 B	57	n

Explanation:

After inputting this command, the characters, graphics and Chinese characters are printed at n times of normal width and height, $n=1 \sim 8$.

Remark: $n=1 \sim 8$, the other value of n will be invalid.
FOR I=1 TO 3 ' from 1 to 3 times
LPRINT CHR\$ (27); CHR\$ (87); CHR\$ (I); 'ESC W command
LPRINT "SPRM"; 'Print character string
NEXT I
The print result is as following:

SPRM SPRM

 SPRM

 SPRM}

ESC -

Select/cancel Underline Print

Format:	ASCII:	ESC	-	n
	Decimal:	27	45	n
	Hexadecimal:	$1 B$	$2 D$	n

Explanation:
When the lowest dot $n=1$, select underline print; when the lowest dot $n=0$, cancel underline print.
All characters including spaces will be printed out with underline after selecting underline print command, unless cancel the underline print command. This command is also valid for Chinese characters.

Remark: Only the lowest dot of n is valid. Default $\mathrm{n}=0$.
The BASIC programs for observing the effect of this command are as below:
LPRINT CHR\$ (27); CHR\$ (57); CHR\$ (2); ' Enlarge the width and height twice LPRINT "SPRM";
LPRINT CHR\$ (27); CHR\$ (45); CHR\$ (1); ' Select underline print LPRINT "SPRM"; ' SPRM print with underline LPRINT CHR\$ (27); CHR\$ (45); CHR\$ (0); ' Cancel underline print LPRINT "SPRM";

The print result is as following:

| ESC + | | | | Select/prohibit Up-line Print |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Format: | ASCII: | ESC | + | n |
| | Decimal: | 27 | 43 | n |
| | Hexadecimal: | $1 B$ | $2 B$ | n |

Explanation:

When the lowest dot $n=1$, select up-line print; when the lowest dot $n=0$, prohibit up-line print.

All characters including spaces will be printed out with up-line after selecting up-line print,
unless prohibit the up-line print command. This command is also valid for Chinese characters.

Remark: Only the lowest dot of n is valid. Default $n=0$.
The BASIC programs for observing the effect of this command are as below:
LPRINT CHR\$ (27); CHR\$ (57); CHR\$ (2); ' Enlarge the width and height twice LPRINT "SPRM";

LPRINT CHR\$ (27); CHR\$ (43);CHR\$ (1); ' Select up-line print LPRINT "SPRM"; SPRM print with up-line LPRINT CHR\$ (27); CHR\$ (43);CHR\$ (0); ' Cancel up-line print LPRINT "SPRM";

The print result is as following:

ESC i		Select/prohibit Reverse White Print		
Format:	ASCII:	ESC	i	n
	Decimal:	27	105	n
	Hexadecimal:	$1 B$	69	n

Explanation:

When the lowest dot $\mathrm{n}=1$, select reverse white print; when the lowest dot $\mathrm{n}=0$, prohibit reverse white print. Reverse white print is printing in the black background, just like the film of photography. The normal printing is that printing black characters in white background.
The default is prohibiting reverse white print.
Remark: Only the lowest dot of n is valid. Default $\mathrm{n}=0$.
The BASIC programs are as below:
LPRINT CHR\$ (27); CHR\$ (105); CHR\$ (1); 'Select reverse white print

LPRINT "SPRD"

The print result is as following:

ESC c			Select/prohibit Reverse Print	
Format:	ASCII:	ESC	c	n
	Decimal:	27	99	n
	Hexadecimal:	1 B	63	n

Explanation:

When the lowest dot $n=1$, select reverse print; when the lowest dot $n=0$, prohibit reverse print.

Remark: Only the lowest dot of n is valid. Default $n=1$.
Notice: Reverse print not only supports character mode but also supports graphics mode and Chinese character mode. When print the graphics in reverse direction, pay attention to the printing sequence of graphic units, please check ESC K command.

ESC 6			Choose Characters Set 1
Format: ASCII:	ESC	6	
Decimal:	27	54	
Hexadecimal:	1B	36	

Explanation: After inputting this command, all the characters will be printed out according to the Characters Set 1 in ANK.

ESC 7
Choose Characters Set 2

Format: ASCII:	ESC	7
Decimal:	27	55
Hexadecimal:	1 B	37

Explanation: After inputting this command, all the characters will be printed out according to the Characters Set2 in ANK.

4.2.4 User-defined Character Setting Commands

ESC \&					User Define Character	
Format: ASCII:	ESC	\&	m	n1	n6
Decimal:	27	38	m	n1	n2..	..n6
Hexadecimal:	1B	26	m	n1	n2.n6

Explanation: This command permits user to define one character. Parameter m is character code the user defines, $m=32 \sim 255$; parameter $n 1, n 2 \ldots . . n 6$ is structure code to define this character. The character dots should be 6x8, which means 6 column and 8dots each column. There is one character byte in each column and the MSB is on the tope as below picture,

User-defined character is saved in RAM and will be lost after power off. If several ESC \& commands use the same m value, only the last one is valid. At most 32 characters can be defined by users. Ref: ESC\% and ESC: commands.
ESC \% Replace User-defined Character

Format: ASCII: ESC \% m1 n1 m2 n2.....mk nk NUL

Decimal:	27	37	m 1	n 1	m 2	$\mathrm{n} 2 \ldots \ldots \mathrm{mk}$	nk	0
Hexadecimal:	1 B	25	m 1	n 1	m 2	$\mathrm{n} 2 \ldots \ldots \mathrm{mk}$	nk	00

Explanation:

This command is used to replace character n in current characters set to user-defined character m. After using this command, the user-defined character m will be printed out instead of character n in current characters set.
$\mathrm{m} 1, \mathrm{~m} 2 \ldots . . \mathrm{mk}$ is user-defined character code.
$\mathrm{n} 1, \mathrm{n} 2 \ldots \ldots . \mathrm{nk}$ is replaced character code in current character set.
Both the value of m and n should be 32~255. Subscript k should be 1~32. The largest character number which can be replaced is 32 . Character NUL is added at the end to mean the command is over. Ref: ESC \% and ESC : command.

Remark: No matter in Chinese mode or character mode, replacing character will be printed when printing this character code.

ESC :			Recover Character in Character Set
Format: ASCII:	ESC	$:$	
Decimal:	27	58	
Hexadecimal:	1 B	3 A	

Explanation:

This command is used to recover original character in character set. This character has been replaced by user-defined character through command ESC \% previously. However, the used-defined character won't be deleted from RAM and still can be used through ESC \% command.

The BASIC programs to observing the effect of ESC \&, ESC \% and ESC : commands are as below:

```
LPRINT CHR$(27); "W"; CHR$(8);
`Enlarge 8times from Width and Height
LPRINT CHR$(27); "&"; CHR$(65); 'ESC & command
30 LPRINT CHR$(&H02); CHR$(&H7C); CHR$(&H40);
40 LPRINT CHR$(&HC0); CHR$(&H40); CHR$(&H00);
50 LPRINT CHR$(27); "%"; CHR$(65); CHR$(65); CHR$(0); 'ESC % command
60 LPRINT CHR$(65); CHR$(13);
70 LPRINT CHR$(27); CHR$(58);
80 LPRINT CHR$(65);
```



```
                                    'ESC : command
                                    'print original character
```

The print result of the above programs is as following:

4.2.5 Graphics Printing and Codepage Choosing Commands

ESC K						Print
		Format:		ASCII:		ESC
		K	n1	n2....data.		
	Decimal:	27	75	n1 n2	n2....	data.
	Hexadecim	I: 1B	4B	n 1	n2.data

This command is used to print $(n 2 \times 256+n 1) \times 8$ bit map. The width of this graphics is ($\mathrm{n} 2 \times 256+\mathrm{n} 1$) dots and the height is 8 dots. Each column has 8 dots and can be presented by a 8-bit byte, the MSB is on the top.

The values of $\mathrm{n} 1, \mathrm{n} 2$ denote a 16-bit binary data, n 1 is LSB, n 2 is MSB, to mean that the width of printed bitmap through ESC K command is $n 2 \times 256+n 1$. In our printer series, $n 2=0 / 1$. The sum of dots number should be ≤ 384. Data are the bytes content of each column in this graphics. The bytes number should equal to $\mathrm{n} 2 \times 256+\mathrm{n} 1$.

Remark: If the width of printed graphics is beyond the remaining width of current line, the beyond part of graphics won't be printed out and the printed position will change to the next line.

For example: If you want to print two Chinese characters "中文" with ESC K command, the bit- map for the two Chinese is as the below figure shows. Each character is composed by 7×8 dots to 7 columns, there is a space between the two characters, so totally there are 15 columns, then $\mathrm{n} 1=15, \mathrm{n} 2=0$, the 15 -byte data showed in hexadecimal are as follows:

7C, 44, 44, FF, 44, 44, 7C, 00, 41, 62, 54, C8, 54, 62, 41

The BASIC programs for this example are as below:
LPRINT CHR\$ (27); "W"; CHR\$ (4); 'Enlarge the width and height 4 times
LPRINT CHR\$ (27); "K"; CHR\$ (15); CHR\$ (0); 'ESC K command
LPRINT CHR\$ (\&H7C); CHR\$ (\&H44); CHR\$ (\&H44); CHR\$ (\&HFF);
LPRINT CHR\$ (\&H44); CHR\$ (\&H44); CHR\$ (\&H7C); CHR\$ (\&H0);
LPRINT CHR\$ (\&H41); CHR\$ (\&H62); CHR\$ (\&H54); CHR\$ (\&HC8);
LPRINT CHR\$ (\&H54); CHR\$ (\&H62); CHR\$ (\&H41);
LPRINT CHR (10) ; CHR\$ (\&H13); 'enter to print
text
The print result is as following:

ESC ${ }^{\prime}$
Print Curve
Format: ASCII: ESC ‘ mL mH n1L n1H n2L n2H......nIL nIH CR Decimal: $2739 \mathrm{~mL} m \mathrm{~m}$ n1L n1H n2L n2H.....nIL nlh 13

Hexadecimal: 1B 27 mL mH n1L n1H n2L n2H......nlL nlh OD

Explanation:

This command is used to print curve along the paper-feeding direction. The value of m is the number of cruves to be printed, $\mathrm{m}=0 \sim 255$.
There are m dots of curve in one horizontal line. n1L n1H n2L n2H $\cdots \cdots$ nIL nIH presents the positions of these m curves. The numbers of nIL or nIH should equal to m. Each dot should be within the largest dots numbers of printer. The last CR ("enter") is used to print out this dot line. The whole m curves are printed out through each dot line by n1L n1H n2L n2H.....nIL nIH data.
Remark: The dot whose position is beyond the paper width won't be printed out. This command is valid no matter there is OD or not.
This instruction has the same effect as the ESC (1B 2C) instruction in the thermal mode (non-compatible dot matrix), and is a solid line (that is, automatic point compensation).

ESC,
Print Curve II (supplement dots automatically to be full curve)
Format: ASCII: ESC , m n1L n1H n2L n2H.....nIL nIH CR
Decimal: 2744 m n1L n1H n2L n2H......nIL nlh 13
Hexadecimal: 1 B 2C m n1L n1H n2L n2H......nIL nlh OD

Explanation：

The using explanation is same as the command for Printing Curve I．
FS P
Print Pre－saved Bitmap

［Format］	ASCII：	FS	P
n			
	Decimal：	28	80
$\mathrm{Hex}:$	1 C	50	n

Explanation：

$0 \leq \mathrm{n} \leq 2$ ，this command is used to print the monochrome bitmap which is pre－saved in the Flash memory of printer．The bitmap in Flash memory can be created and wrote into printer through Setting Tool in PC．The largest width of bitmap is 384dots and the largest height is 1365dots．（The bitmap can＇t be over 64km．）＂n＂is the number of bitmap．
Remark：If the number of bitmap isn＇t defined，this command is invalid．
The bitmap must be monochrome．
This command won＇t be affected by printing mode（underline，character size or reverse white printing）．
If the width of printed bitmap is beyond one line，the beyond part won＇t be printed out．
It needs the special setting tool to download the bitmap．Pls ref．（RMDIIID Setting Tool）．The downloaded bitmap through this method won＇t be low，unless it is covered by other bitmap．

ESC t
Choose Codepage
$\begin{array}{lclcc}\text { Format：} & \text { ASCII：} & \text { ESC } & \mathrm{t} & \mathrm{n} \\ & \text { Decimal：} & 27 & 116 & \mathrm{n}\end{array}$
Hexadecimal：1B 74 n
Explanation：
$0 \leq n \leq 45$ ，when n is $0 x F E$ ，cancel choosing codepage．The character will be printed out according to Codepage Table in Appendix 2．Default $n=0 x F E$ ，which means no codepage is choosed．
Choose codepage on n page from the following Codepage Table．The value of n is in decimal
format．

\mathbf{n}	代码页	Code Page
0	CP437［美国，欧洲标准］	CP437［U．S．A．，Standard Europe］
1	KataKana［片假名］	Katakana
2	PC850［多语言］	PC850［Multilingual］
3	PC860［葡萄牙］	PC860［Portuguese］
4	PC863［加拿大－法语］	PC863［Canadian－French］
5	PC865［北欧］	PC865［Nordic］
6	WCP1251［斯拉夫语］	WCP1251［Cyrillic］
7	CP866 斯拉夫 2	CP866 Cyrilliec \＃2
8	MIK［斯拉夫／保加利亚］	MIK［Cyrillic／Bulgarian］
9	CP755［东欧，拉脱维亚 2］	CP755［East Europe，Latvian 2］
10	［伊朗，波斯］	Iran
11	保留	reserve
12	保留	reserve
13	保留	reserve
14	保留	reserve
15	CP862［希伯来］	CP862［Hebrew］

16	WCP1252［拉丁语 1］	WCP1252 Latin I
17	WCP1253［希腊］	WCP1253［Greek］
18	CP852［拉丁语 2］	CP852［Latina 2］
19	CP858［多种语言拉丁语 1＋欧元符］	CP858 Multilingual Latin I＋Euro）
20	伊朗 II［波斯语］	Iran II
21	拉脱维亚	Latvian
22	CP864［阿拉伯语］	CP864［Arabic］
23	ISO－8859－1［西欧］	ISO－8859－1［West Europe］
24	CP737［希腊］	CP737［Greek］
25	WCP1257［波罗的海］	WCP1257［Baltic］
26	泰文（与 TM－88 Thai character code 14 同）	Thai
27	CP720［阿拉伯语］	CP720［Arabic］
28	CP855	CP855
29	CP857［土耳其语］	CP857［Turkish］
30	WCP1250［中欧］	WCP1250［Central Eurpoe］
31	CP775	CP775
32	WCP1254［土耳其语］	WCP1254［Turkish］
33	WCP1255［希伯来语］	WCP1255［Hebrew］
34	WCP1256［阿拉伯语］	WCP1256［Arabic］
35	WCP1258［越南语］	WCP1258［Vietnam］
36	ISO－8859－2［拉丁语 2］	ISO－8859－2［Latin 2］
37	ISO－8859－3［拉丁语 3］	ISO－8859－3［Latin 3］
38	ISO－8859－4［波罗的语］	ISO－8859－4［Baltic］
39	ISO－8859－5［斯拉夫语］	ISO－8859－5［Cyrillic］
40	ISO－8859－6［阿拉伯语］	ISO－8859－6［Arabic］
41	ISO－8859－7［希腊语］	ISO－8859－7［Greek］
42	ISO－8859－8［希伯来语］	ISO－8859－8［Hebrew］
43	ISO－8859－9［土耳其语］	ISO－8859－9［Turkish］
44	ISO－8859－15［拉丁语 9］	ISO－8859－15［Latin 3］
45	［泰文 2］	Thai2

4．2．6 Initialization Commands

ESC＠
Initialize Printer
Format：ASCII：ESC＠
Decimal： 2764
Hexadecimal：1B 40
Explanation：
This command is to initialize the following contents of the printer：
－Clear the data in the print buffer；
－Restore the default；
Delete user－defined characters．

4.2.7 Data Control Commands

CR
Carriage Return
Format: ASCII: CR
Decimal: 13
Hexadecimal: 0D

Explanation:

When the "CR" command is sent to printer, all data in the print buffer will be printed out and paper will be fed one line.

NUL		NUL
Format:ASCII: NUL Decimal: 0 Hexadecimal: 00		

Explanation:

NUL command is used as the final code in some commands such as ESC B, ESC D, ESC\% and ECS ', to denote these commands are over. NUL command is ignored when used alone.

4.2.8 Chinese Character Print Commands

The command to print Chinese character is FS standard command. All Level I\&II Chinese characters and graphics, etc in 16dots\&24dots Chinese character library are according to Chinese National Standard GB2312-80. For 24dots, there are only graphics, symbols, etc I A1 and A9 zone are 24dots. Each Chinese character has two bytes. Big5 characters with 16dots are in Traditional Chinese characters library.
The following is the detailed of Chinese Character Print Commands:

FS \&

Select Chinese Print Mode
Format: ASCII: FS \&
Decimal: 2838
Hexadecimal: 1C 26

Explanation:

After printer received this command, it will switch from ASCII character print mode to Chinese character print mode. Using GB Chinese Character Library I\&II.
Notice: This command is used to switch printer into Chinese Mode when printer is in normal printing mode, but won't be saved after power off. Only after setting through Setting Tool, the result can be saved.

FS.
Cancel Chinese Print Mode
Format: ASCII: FS
Decimal: 2846
Hexadecimal: 1C 2E

Explanation:

After printer received this command, it will switch from Chinese character print mode to ANK characters print mode.

Notice: This command is used to switch printer into ANK characters print mode when printer is in normal printing mode, but won't be saved after power off. Only after setting through Setting Tool, the result can be saved.

FS SO		Set Chinese Double Width Print	
Format:	ASCII:	FS	SO
	Decimal:	28	14
	Hexadecimal:	1C	OE

Explanation:

Characters following this command are printed at twice their normal width, does not enlarge the height.
Notice: this command is valid only in one line.

FS DC4 Cancel Chinese Double Width Print

Format:	ASCII:	FS	DC4
	Decimal:	28	20

Hexadecimal: 1C 14
Explanation:
This command is to cancel FS SO command.

FS W
Set the Enlarging Multiple of Chinese Character

Format:	ASCII:	FS	W	n
	Decimal:	28	87	n
	Hexadecimal	10	57	n

Explanation:

Characters following this command are printed at n times of their normal width and height, $\mathrm{n}=1 \sim 8$

FS J Set Vertical Print
Format: ASCII: FS J
Decimal: $28 \quad 74$

Hexadecimal: 1C 4A
Explanation:
This command is to print Chinese characters vertically, which is that to print characters by rotating 90° at anticlockwise direction.

FS K
Set Horizontal Print

Format: ASCII:	FS	K
Decimal:	28	75
He		

Explanation:

This command is to print Chinese characters horizontally, if have not set rotation, the Chinese characters will be printed horizontally, that is normal print status.

Format: ASCII: FS I n
Decimal: $28 \quad 73$ n
\qquad

Explanation:

This command is to rotate Chinese characters, the values of n are as following (Default is 180°):

n	Characters rotated at anticlockwise direction
0	0°
1	90°
2	180°
3	270°
other	invalid

FS -
Chinese Character with Underline Print
Format: ASCII:
Decimal: 2845 n
Hexadecimal: 1C 2D n

Explanation:

The specified Chinese characters after this command are printed with underline. When LSB $n=1$, underline selected; when LSB $n=0$, it canceled.
Remark: Only LSB of n is valid. Default $n=0$. This command is valid for both characters and Chinese.

FS +		Chinese Character with Up-line Print	
Format: ASCII:	FS	+	n
Decimal:	28	43	n
Hexadecimal:	1 C	2 B	n

Explanation:

The specified Chinese characters after this command are printed with up-line. When LSB $\mathrm{n}=1$, up-line selected; when LSB $\mathrm{n}=0$, it canceled.
Remark: Only LSB of n is valid. Default $n=0$. This command is valid for both characters and Chinese.

ESC Hex Mode Print
Format
ASCII
ESC
Decimal:
27 34 n

Hexadecimal: 1B 22 n

Explanation:

When LSB $n=0$, cancel hex mode print; when LSB $n=1$, hex mode print is valid.
When in hex mode print, all the commands and data the host sent to the printer will be printed in hex codes.
Hex mode print will be carried out only when the print buffer is full.
Notice: only LSB of n is valid, default $n=0$

4.2.9 Real-time Commands

DLE EOT n			Real-time status transmission	
Format: ASCII:	DLE	EOT	n	
Decimal:	16	4	n	
Hexdecimal:	10	04	n	

Explanation:

Transmits the selected printer status specified by n in real-time, according to the following parameters:
$\mathrm{n}=1$: Transmit printer status
$\mathrm{n}=2$: Transmit off-line status
$\mathrm{n}=3$: Transmit error status
$\mathrm{n}=4$: Transmit paper sensor status

- The printer returns the related status at once upon receiving it.
- This command should not be used within the data sequence of another command that consists of 2 or more bytes.
- The printer transmits the current status. Each status is represented by one byte data.
- The printer transmits the status without confirming whether the host computer can receive data.
- The printer executes this command at once upon receiving it.
- This command is valid only for serial interface printer. The printer will execute this command at once after receiving it, no matter what status the printer is in.
$\mathrm{n}=1$: Printer status

Bit	$0 / 1$	HEX	Decimal	Function
0	0	0	0	Fixed to 0
1	1	2	2	Fixed to 1
2	0	0	0	Fixed to 0
3	0	0	0	On-line
	1	8	8	Off-line
4	1	10	16	Fixed to 1
5,6	-	-	-	Undefined
7	0	0	0	Fixed to 0

$\mathrm{n}=2$: Off-line status

Bit	$0 / 1$	HEX	Decimal	Function
0	0	0	0	Fixed to 0
1	1	2	2	Fixed to 1
2	0	0	0	Fixed to 0
3	0	0	0	Non-pressing paper FEED button
	1	8	8	Pressing paper FEED button
	1	10	16	Fixed to 1
5	0	0	0	Paper exists
	1	20	32	Paper lack
	0	0	0	No error status
7	0	40	64	Error status
	0	0	0	Fixed to 0

n = 3: Error status

Bit	$0 / 1$	HEX	Decimal	Function
0	0	0	0	Fixed to 0
1	1	2	2	Fixed to 1
2	-	-	-	Undefined
3	0	0	0	Fixed to 0
4	1	10	16	Fixed to 1
5	0	0	0	Fixed to 0
6	0	0	0	Printing head with normal temperature
	1	40	64	Printing head with over- heat temperature
	0	0	0	Fixed to 0

$n=4$: paper feeding status

Bit	1,0	HEX	Decimal	Function
0	0	0	0	Fixed to 0
1	1	2	2	Fixed to 1
2,3	0	0	0	Fixed to 0
4	1	10	16	Fixed to 1
5,6	0	0	0	Paper exits
	1	60	96	Paper lack
7	0	0	0	Fixed to 0

4.2.10 Bar Code Printing Commands

GS k m d1...dk NUL Print Barcode

Format: (1)ASCII:
Decimal:
Hexadecimal:
1D
(2)ASCII:

GS
GS k
m d1...dk NUL
29
107
m d1...dk 0
6B
m
d1...dk 00

Decimal:
29
107
$m \quad n$
d1... dn
Hexadecimal:
1D
6B
$m \quad n \quad d 1 \ldots d n$

Explanation:

(1) $0 \leq m \leq 6$ (the value range of $k \& d$ is decided by the barcode type)
(2) $65 \leq m \leq 73$ (the value range of $k \& d$ is decided by the barcode type)

Remark: If the width of barcode is beyond the effective printing width, no characters can be printed, but paper feeds.
m is used to choose the barcode type, showed as below:

m		Barcode type	Character number	d
(1)	0	UPC-A	$11 \leq \mathrm{k} \leq 12$	$48 \leq \mathrm{d} \leq 57$
	1	UPC-E	$11 \leq \mathrm{k} \leq 12$	$48 \leq \mathrm{d} \leq 57$
	2	JAN13 (EAN13)	$12 \leq \mathrm{k} \leq 13$	$48 \leq \mathrm{d} \leq 57$
	3	JAN 8 (EAN8)	$7 \leq \mathrm{k} \leq 8$	$48 \leq \mathrm{d} \leq 57$
	4	CODE39	$1 \leq \mathrm{k} \leq 255$	$45 \leq \mathrm{d} \leq 57,65 \leq \mathrm{d} \leq 90,32,36,37,43$
	5	ITF	1 $\leq \mathrm{k} \leq 255$	$48 \leq \mathrm{d} \leq 57$
	6	CODABAR	$1 \leq \mathrm{k} \leq 255$	$\begin{aligned} & 48 \leq d \leq 57,65 \leq d \leq 68,36,43, \\ & 45,46,47,58 \end{aligned}$
(2)	65	UPC-A	$11 \leq \mathrm{n} \leq 12$	$48 \leq$ d ≤ 57
	66	UPC-E	$11 \leq n \leq 12$	$48 \leq \mathrm{d} \leq 57$

67	JAN13 (EAN13)	$12 \leq \mathrm{n} \leq 13$	$48 \leq \mathrm{d} \leq 57$
68	JAN 8 (EAN8)	$7 \leq \mathrm{n} \leq 8$	$48 \leq \mathrm{d} \leq 57$
69	CODE39	$1 \leq \mathrm{n} \leq 255$	$45 \leq \mathrm{d} \leq 57,65 \leq \mathrm{d} \leq 90,32,36,37,43$ $\mathrm{~d} 1=\mathrm{dk}=42$
70	ITF	$1 \leq \mathrm{n} \leq 255$	$48 \leq \mathrm{d} \leq 57$
71	CODABAR	$1 \leq \mathrm{n} \leq 255$	$48 \leq \mathrm{d} \leq 5765 \leq \mathrm{d} \leq 68,36$, $43,45,46,4758$
72	CODE93	$1 \leq \mathrm{n} \leq 255$	$0 \leq \mathrm{d} \leq 127$
73	CODE128	$2 \leq \mathrm{n} \leq 255$	$0 \leq \mathrm{d} \leq 127$

Explanation for command (1):
Character NUL is added at the last to mean that this command is over.
When UPC-A or UPC-E is choosed, after 12bytes barcode data is received, the other characters will be managed as the common characters.

When JAN13 (EAN13) is choosed, after 13bytes barcode data is received, the other characters will be managed as the common characters.

When JAN8 (EAN8) is choosed, after 8bytes barcode data is received, the other characters will be deal with as the common characters.

The numbers of ITF code data must be even number. If odd numbers of barcode data is input, the last one will be ignored.

Explanation for command (2):
n is used to denote the number of barcode data. Printer will deal with the last n bytes data as the barcode data.

If n is beyond the specified range, the printer will not deal with this command and just deal with the data as the common data.

Explanation:

- If barcode data d is beyond the specified range, this command is invalid.
- If the barcode is beyond printing zone at horizontal direction, invalid.
- No matter how much the line height is set by command ESC 1 n, paper feeding length will be same with the barcode height.
- This command is valid only that there is no data in the printing buffer. If there is data in printing buffer, this command will be ignored.
- After printing barcode, the printing position will be set on the first line.
- This command won't be affected by Print Mode Setting (such as bold printing, duplicate printing, underline, character size, reverse white printing, etc), but will be affected by Invert Printing.

When CODE93 ($m=72$) is choose:
When printer print HRI character, ($\mathbf{\square}+$ one alphabet character) is used as one control character ($<00>\mathrm{H}$ to $<1 \mathrm{~F}>\mathrm{H}$ and $<7 \mathrm{~F}>\mathrm{H}$).

Conversion form between control character and HRI character is as below,

Control character			HRI character	Control character			HRI character
ASCII	Hex	Decimal		ASCII	Hex	Decimal	
NUL	00	0	■U	DLE	10	16	- P
SOH	01	1	- A	DC1	11	17	■ Q
STX	02	2	- B	DC2	12	18	- R
ETX	03	3	- ${ }^{\text {c }}$	DC3	13	19	- S
EOT	04	4	■	DC4	14	20	- T
ENQ	05	5	- E	NAK	15	21	■ U
ACK	06	6	- F	SYN	16	22	- V
BEL	07	7	■ G	ETB	17	23	■ W
BS	08	8	■	CAN	18	24	■ X
HT	09	9	■	EM	19	25	■ Y
LF	0A	10	■ J	SUB	1A	26	■ Z
VT	OB	11	■ K	ESC	1B	27	■ ${ }^{\text {A }}$
FF	OC	12	■ L	FS	1C	28	- B
CR	0D	13	■ M	GS	1D	29	■ C
SO	OE	14	- N	RS	1E	30	■
SI	OF	15	■ 0	US	1F	31	- E
				DEL	7F	127	-T

When CODE128 ($m=73$) is choose:

- Pls refer to Appendix 5 - Related information and characters set of CODE128.
- When CODE128 is used, pls encode according to the below structions:

1. Do choose characters set (one of CODE A, CODE B and CODE C) before the barcode data.
2. Choosing characters set is finished through sending character " "" to combine with the other character; ASCII character " $\{$ " is finished by sending character " $\{$ " twice.

Specified	Sending Data

Characters Set	ASCII	Hex	Decimal
SHIFT	$\{\mathrm{S}$	$7 \mathrm{~B}, 53$	123,83
CODE A	$\{\mathrm{A}$	$7 \mathrm{~B}, 41$	123,65
CODE B	$\{\mathrm{B}$	$7 \mathrm{~B}, 42$	123,66
CODE C	$\{\mathrm{C}$	$7 \mathrm{~B}, 43$	123,67
FNC1	$\{1$	$7 \mathrm{~B}, 31$	123,49
FNC2	$\{2$	$7 \mathrm{~B}, 32$	123,50
FNC3	$\{3$	$7 \mathrm{~B}, 33$	123,51
FNC4	$\{4$	$7 \mathrm{~B}, 34$	123,52
"\{"	$\{\{$	$7 \mathrm{~B}, 7 \mathrm{~B}$	123,123

[Example] : Printing"No. 123456"
In this example, printer will print "No." by CODE B, and print the other numbers by CODE C:
GS k 731012366781114612367123456

- If it is not the choosing of characters set at the beginning of barcode data, the printer will stop dealing with this command and deal with the other data as the common data.
- If the combination by "\{" and that following character is not in the above form, the printer will stop dealing with this command and deal with the other data as the common data.
- If the character received by printer is not barcode characters set data, the printer will stop dealing with this command and deal with the other data as the common data.
- When printer prints HRI characters, it doesn't print shift character and choosing data in characters set.
- Function characters in HRI character won't be printed.
- Control characters(<00>H to $<1 \mathrm{~F}>\mathrm{H}$ and $<7 \mathrm{~F}>\mathrm{H}$)in HRI character won't be printed.

Pls be sure the space at both left and right side of barcode. The space will be different according to the different barcode.

Pls refer to GS H, GS h, GS w, Appendix 5.
Format: ASCII: GS H n
Decimal: $\quad 29 \quad 72$ n

Hexadecimal: 1D 48 n
Explanation: $0 \leq n \leq 3,48 \leq n \leq 51$. When printing barcode, choosing printing position for HRI characters.
n can appoint the printing position of HRI:

n	Printing position
0,48	Don't print
1,49	Above barcode
2,50	Below barcode
3,51	Both above and below barcode

HRI is note character for barcode content. Default value: $n=0$.
Pls refer to GS k
Remark: if n is in other value, it is invalid.

GS h n
Format: ASCII: GS h n
Decimal: 29104 n
Hexadecimal: 1D 68 n
Explanation: Set the height of printed barcode. $\mathrm{n}=0 \sim 255$, unit is dot. If $\mathrm{n}=0$, it is 256 dots.
Default value $\mathrm{n}=60$.

GS w	n			
Format :	ASCII :	GS	w	n
	Decimal:	29	119	n
	Hexadecimal:	1D	77	n

Explanation: $2 \leq \mathrm{n} \leq 6$ (the other value of n is invalid). Set the horizontal module width of barcode. The detail is as below,
n Width of single basic Width of double basic module

Narrow basic	Wide basic
module (mm)	module (mm)

2	0.25	0.25	0.625
3	0.375	0.375	0.875
4	0.5	0.5	1.25
5	0.625	0.625	1.625
6	0.75	0.75	1.875

Single basic module barcode: UPC-A, UPC-E, JAN13 (EAN13), JAN8 (EAN8), CODE93, CODE128

Double basic module barcode: CODE39, ITF, CODABAR
Default value: $n=3$. Pls refer to GS k 。

Chapter 5 Using and Maintenance

5.1 Printing Head Maintenance

In order to guarantee the normal work of the printer, pls notice that do not disassemble the printing head. If the outer case of printer is not used, pls pay more attention to protect the printing head.

1. If you do not use the printer for a long time, please don't put through the printer on the power.
2. If the printer works abnormally, please turn off the printer power.
3. The used power must meet the requirements, otherwise it will be disadvantageous for the print head.
4. While changing the paper roll, please notice whether there is paper scrap on the print head. If so, please blow gently.
5. Keep the circuit board of the printer clean and
dustless.
6. When the thermal printer can't print clearly, the printing head can be wiped by alcohol cotton ball.

5.2 Other

Please also notice the following aspects:

1. Don't insert and pull out the chip. If there is abnormity, please hand over to the producer for repairing.
2. When you suppress to join the electric wire by yourself, pls do pay attention to the
interface of printer - parallel interface or serial interface, to avoid the wrong connection with the host computer.

Chapter 6 Printer Using under Windows

The version of SP-RMD8 printers' driver software is SP-DRV211. The manual for driver software and installation can be downloaded from our website. Do not introduce the details here.
Remark: During installing driver, choose the printer model " 58 thermal series". The other details can be checked from Installation Manual.

Appendix 1 Valid Codes Form under ANK printing

The serial numbers of valid codes are from 00H to OFFH under ANK printing, among which $00 \mathrm{H}-1 \mathrm{FH}$ are control codes and $20 \mathrm{H}-0 \mathrm{FFH}$ are character codes. Character codes are composed by two characters sets. The character codes of each character set are all in $20 \mathrm{H}-0 \mathrm{FFH}$ permutation.

Characters Set 1:

	0	1	2		3	4	5		6	1		8	9	A	B		C	D	E	F
2		！	＂		\＃	\＄	\％		k	，		（	）	＊	＋		，	－	．	$/$
3	0	1	2		3	4	5		6	7		8	9	：	；		＜	$=$	＞	？
4	9	A	B		C	D	E		F	G		H	I	J	K		L	3	N	0
5	P	Q	R		S	T	U		V	V		X	Y	Z	［		\}	］	1	－
6	－	a	b		c	d	e		f	g		h	i	j	k		1	m	n	－
7	p	q	r		s	t	u		v	＊		x	y	z	1		i	\}		
8	0	－	\rightarrow		$三$	四	立		六	t		\wedge	九	＋	几		年	月	H	$¥$
9	ε	§	t		\rightarrow	\wedge	\pm		\div	∞		\square	．．．	－	\square		2	3	2	，
A	a	β	Y		8	ε	ζ		η	θ		λ	μ	v	Ω		ξ	π	ρ	σ
B	τ	Φ	ψ		ω	Γ	\triangle		Π	Σ		Ψ	Ω	E	Θ		A	ϕ	\uparrow	\angle
C	［	二	\square		］	－	－		I				）	Γ	L		」	\square	\times	\times
D	［	－	－		］	－	－		I					Γ	L		」	7	－	I
E	」	7	Γ		L	\perp	T		F	－		\boldsymbol{r}	4	\square	\square		－	－	＜	＞
F	－					－			1	－		${ }^{2}$	8	F	L		d	7		＋

Characters Set 2：

	0	1	2	3	4	5	6	7	8	9	A	B	C	D	E	F
2	百	千	万	II	${ }^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{F}$	－1	4	4	1／2	$1 / 3$	1／4	T	\times	\checkmark	\perp
3	／／	｜｜	U	ก	\oplus	\subset	$コ$	E	\＆	∇	v	∂	J	¢	0	\because
4	\therefore	三	\cong	\cdots	\neq	∞	\leqslant	\geqslant	＊	＋	$\stackrel{8}{8}$	우	\ddagger	\dagger	\％	：
5	※	Q	（	）	6	8	『	】	を	J	\sim	\cdots	\bigcirc	ψ		4
6	＊	7	1	\dot{j}	\pm	才	力	＊	夕	夕	\Rightarrow	＋	＊	\％	せ	y
7	夕	7	7	\cdots	卜	＋	$=$	π	ネ	，	八	上	7	\sim	ホ	マ
8	ミ	4	\star	モ	P	\perp	ヨ	5	リ	π	\checkmark	口	7	米	I	7
9	シ	7	\％	\pm	4	＊	工	\％	7	11	\bigcirc	E	Д	E	Ж	3
A	и	й	ת	L	4	III	Щ	b	ы	3	10	g	6	§	è	\emptyset
B	0	9	0	è	á	ä	à	ă	S	ê	ë	è	İ	i	I	Ã
C	A	E	æ	F	0	0	\bigcirc	0	U	\vec{y}	0	Ü	k	P	f	ó
D	1	\bigcirc	u	ก̄	N	a	Q	i	9	11	e	ả	ã	á	ā	S
E	ê	e	\dot{e}	7	\hat{i}	i	A	A	É	æ	AE	0	Ō	\dot{O}	\hat{U}	$\dot{\text { U }}$
F	\bar{y}	0	\ddot{U}	＊	P	f	a	I	δ	u	\tilde{n}	\tilde{N}	a	\underline{g}	i	n

Appendix 2 Valid Codes Form under Chinese printing

The serial numbers of valid codes are from 00 H to 0 FFH under Chinese printing，among which $00 \mathrm{H}-1 \mathrm{FH}$ are control codes and $20 \mathrm{H}-0 \mathrm{FFH}$ are character codes．

HEX	0	1	2	3	4	5	6	7	8	9	A	B	C	D	E	F
2		！	＂	\＃	\＄	\％	\＆	，	（	）	＊	＋	，	－	．	／
3	0	1	2	3	4	5	6	7	8	9	：	；	＜	$=$	＞	$?$
4	（a）	A	B	C	D	E	F	G	H	I	J	K	L	M	N	O
5	P	Q	R	S	T	U	V	W	X	Y	Z	［	\backslash	］	\wedge	－
6	，	a	b	c	d	e	f	g	h	i	j	k	1	m	n	0
7	p	q	r	S	t	u	v	W	X	y	Z	\｛	｜	\}	\sim	
8	$€$	ü	é	â	ä	à	å	Ç	ê	ë	è	İ	̂̂	ì	Ä	\AA
9	É	E	FE	ô	\ddot{O}	ò	û	ù	y	Ö	Ü	¢	£	\ddagger	${ }^{\text {P }}$	f
A	á	í	ó	ú	ก̃	N	$\underline{ }$	¢	¿	Γ	7	1／2	1／4	i	《	》
B		※		1	\dagger	＝	－ 1	7	7	教	\｜	ㄱ	」	لا	」	7
C	L	\perp	T	－	－	$+$	$1=$	If	L	「	」	\bar{T}	IL	$=$	碞	\perp
D	․	〒	π	แ	k	F	π	H	\＃	」	Γ		\square	－	I	\square
E	α	β	Γ	π	Σ	σ	μ	τ	Φ	θ	Ω	δ	∞	φ	\in	\cap
F	\equiv	\pm	\geqslant	\leqslant	\uparrow	1	\div	\approx	。	－	－	$\sqrt{ }$	n	2	\square	

Appendix 3 Printing Commands Form

Decimal	Hexadecimal	Symbol\&Format	Function	Page
0	0	NUL	Ending Mark	30
10	OA	LF	FEED LINE	15
13	OD	CR	Carriage Return	29
164 n	1004 n	DLE EOT n	Real-time status transmission	33
2734 n	1B 22 n	ESC " n	Hex Mode Print	32
2737 n	1B 25 n	ESC \% m1 n1......mk nk 00	Replace User-defined Character	25
2738	1B 26	ESC \&mn1 n2......n6	User Define Character	24
2739	1B 27	ESC‘ m ...nlL nlH CR	Print M Curve dots (dashed)	27
2743 n	1B2B n	$E S C+n$	Select/prohibit Up-line Print	22
2744	1B 2C	ESC , m...nlL nlH CR	Print M Curve dots (full line)	27
2745 n	1B 2D n	ESC - n	Select/cancel Underline Print	21
2749 n	1B31 n	ESC 1 n	Set n Dot-line Spacing	16
2754	1B 36	ESC 6	Choose Characters Set 1	24
2755	1B 37	ESC 7	Choose Characters Set 2	24
2758	1B 3A	ESC :	Recover Character in Character Set	25
2764	1B 40	ESC @	Initialize Printer	29
2766	1B 42	ESC B n1...nkNUL	Set Vertical Tab Value	16
2768	1B 44	ESC D n1...nk NUL	Set Horizontal Tab Value	17
2774 n	1B 4A n	ESC J n	n Dot Line Feed	15
2775	1B 4B	ESC K n1...n2...data	Print bit-map graphics	26
2781 n	1B 51 n	ESC Q n	Set Right Margin	19
2785 n	1B 55 n	ESCUn	Enlarge Width	20

2786 n	1B 56 n	ESC V n	Enlarge Height	20
2787 n	1B 57 n	ESC W n	Enlarge Width and Height	21
2799 n	1B63 n	ESC C n	Select/prohibit Reverse Print	23
$\begin{aligned} & 27 \\ & \mathrm{n} \end{aligned}$	1B66m n	ESC fmn	Print Blank Characters or Lines	18
27105 n	1B 69 n	ESCin	Select/prohibit Reverse White Print	23
27108 n	1B6C n	ESCIn	Set Left Margin	19
27112 n	1B $70 n$	ESC P n	Set Character Space	20
27116 n	1B 74 n	ESCtn	Choose Codepage	28
2814 n	1C 0En	FS SO n	Set Chinese Double Width Print	31
2820	1C 14	FS DC 4	Cancel Chinese Double Width Print	31
2838	1C26	FS \&	Select Chinese Print Mode	30
2843 n	1C 2B n	$F S+n$	Chinese Character with Up-line Print	32
2845 n	1C 2D n	FS - n	Chinese Character with Underline Print	32
2846	1C 2E	FS	Cancel Chinese Print Mode	30
2873 n	1C $49 n$	FS In	Set Chinese Character Rotational Print	31
2874	1C 4A	FS J	Set Vertical Print	31
2875	1C 4B	FS K	Set Horizontal Print	31
2880 n	1C $50 n$	FS P n	Print Pre-saved Bitmap	27
2887 n	1C 57 n	FS W n	Set the Enlarging Multiple of Chinese Character	31
2972 n	1D 48 n	GS H n	Choose printing position of HRI character	38
29104 n	1D 68 n	GS h n	Set Barcode Height	39
29107 n	1D 6B n	GS kn	Print Barcode	34
29119 n	1D 77 n	GS w n	Set Barcode Width	39

Note: When using the setting tool to set English characters, the font will automatically change to 8 * 6 . If you need, please choose 8 * 16.

Appendix 4 Example of MCU Interface

Recommended hardware diagram of host computer:

See the description of the printer's serial interface in 3.1.1

PIN Assignment of serial port
PIN Assignment of serial port

PIN	Name	Source	Explanation
2	RXD	Host	Printer receives data from host
3	TXD	Printer	Printer send control code X-ON/X-OFF and data to host
5	CTS	Printer	When the signal is "MARK", printer is busy could not receive data; When it is "SPACE", printer is ready to receive data.
6	DSR	Printer.	The signal is "SPACE", printer is online
7	GND	-	Signal ground
8	DCD	Printer	Same to CTS

Assembly program is like below:

$$
\mathrm{cts}
$$

ORG 0000 H
Strat: mov tmod,\#20h ; Initialization COM
mov tll, \#0fdh
mov th1,\#0fdh ; Baud rate 9600
mov scon, \#0c0h ; Mode 3
setb tr1
main:mov r7,\#0
mov dptr,\#date
loop:mov a,r7
move a,@a+dptr : Acce'ss
inc r 7
cjne a,\#00h,loop1 ; Finish sign 00 H
sjmp S
loop1:call sczj
sjmp loop
sczj: jb cts,\$
Busy
mov c,psw. 0
;cpl c
: Odd parity, C revers
mov sbuf,a
jub ti,\$; Wait sending finished
clr t 1
ret
date:; db 1bh,40h
db 'sprinter rs232 test'
$\mathrm{db} 0 \mathrm{dh}, 00 \mathrm{~h}$
ret
end

C program is like below:
\#include reg52.h
unsigned char inbuf1[19]="sprinter rs232 test";
sbit busy $=P 3 \wedge 0$;
void send_char_com(unsigned char ch) //Send a bite to COM
\{while(busy); //' Busy
//TB8=P; // Even' parity
TB8=!P; // Odd parity
$\mathrm{SBUF}=\mathrm{ch}$;
while($\mathrm{TI}=0$); // Wait sending finished
$\mathrm{TI}=0$;
\}
void send_string_com(unsigned char *str) // Send string
\{
unsigned int $\mathrm{k}=0$;
do
\{
send_char_com(*(str +k$)$);
$\mathrm{k}++$;
\}while($\mathbf{k} \leqslant 19$);
\}
main()
\{
$\mathrm{SCON}=0 \mathrm{xc} 0 ; / /$ Mode 3
TMOD $=0 \times 20 ; \quad / /$
TH1=0xfd; // Baud rate 9600
TR1=1;
send_char_com (0x1b);
send_char_com (0 x 40); /nitialization command send_string_com(inbuf1); of printer send_char_com (0x0a);\}

When the data is not big, CTS can not be connected.

Host parallel I/O mode recommended Schematic

The definition of the printer's parallel interface is shown in Figure 3.1.2.

14
25
DB25 Parallel interface connector PIN assignment The pin assignment of parallel interface is shown as table 2-2:

Pin No.	Signal	Direction	Description
1	ISTB	In	Strobe pulse to latch data, reading occurs at raising edge.
2	DATA1	In	
3	DATA2	In	These signals represent the 1st bit to 8th bit of the parallel interface 4
5	DATA3	In	data, each signal is at HIGHT level when data is logic 1, and LOW
6	DATA4	In	when data is logic 0.
7	DATA5	In	DATA6
8	DATA7	In	In
9	DATA8	In	Answer pulse, LOW level signal indicates that data have already been received and the printer gets ready to receive the next data.

11	BUSY	Out	HIGH level signal indicates that the printer is BUSY and can not receive data.
12	PE	Out	HIGH level signal indicates that paper is end.
13	SEL	Out	Pulling up to HIGH level signal by a resistor indicates the printer is online.
15	/ERR	Out	Pulling up to HIGH level signal by a resistor indicates there is no error.
$14,16,17$	NC	---	No connection
$19-25$	GND	---	Grounding logical 0 level

Note: (1) "In" denotes inputting to the printer, "Out" denotes outputting from the printer.
(2) Signal level is TTL standard.

Fig. Pin Assignment of Parallel Interface
DB36 Parallel interface connector PIN assignment

DB-36 Parallel PIN assignment:

Pin No.	Signal	Direction	Description
1	/STB	In	Strobe pulse to latch data, reading occurs at raising edge.
$\begin{aligned} & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \\ & 7 \\ & 8 \\ & 9 \end{aligned}$	$\begin{aligned} & \text { DATA1 } \\ & \text { DATA2 } \\ & \text { DATA3 } \\ & \text { DATA4 } \\ & \text { DATA5 } \\ & \text { DATA6 } \\ & \text { DATA7 } \\ & \text { DATA8 } \end{aligned}$	In In In In In In In In	These signals represent the 1st bit to 8th bit of the parallel interface data, each signal is at HIGHT level when data is logic 1 , and LOW when data is logic 0 .
10	IACK	Out	Answer pulse, LOW level signal indicates that data have already been received and the printer gets ready to receive the next data.
11	BUSY	Out	HIGH level signal indicates that the printer is BUSY and can not receive data.

12	PE	Out	HIGH level signal indicates that paper is end.
13	SEL	Out	Pulling up to HIGH level signal by a resistor indicates the printer is online.
32	IERR	Out	Pulling up to HIGH level signal by a resistor indicates there is no error.
$14,15,16,17,1$ $8,34,36$	NC	---	No connection
$16,19-30,33$	GND	---	Grounding logical 0 level

Assembly program as below:

STB	bit	p3.4
BUSY	BIT	P3.5
PDATA	BIT	P2
ORG		0000 H

strat:
LOOP:MOV DPTR,\#DATE
LOOP1:CLRA
MOVC A, @A+DPTR
$\mathrm{CJNEA}, \# 00 \mathrm{H}, \mathrm{GO1}$; Printer end mark
SJMP LOOP
GO1: LCALL PRINT
INC DPTR
SJMP $\$$
PRINT:PUSH DPH
PUSH DPL
JB BUSY,\$; Busy
MOV P2,A
CLR STB :Send STB rising edge
TOP
NOP
NOP
SETB STB
NOP
NOP
NOP
NOP
POP DPL
POP DPH
RET
date: db 1bh, 40 h
db 'sprinter test ok' $\mathrm{db} 0 \mathrm{dh}, 00 \mathrm{~h}$
ret

Recommended schematic diagram of the parallel port bus mode of the host computer

